
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC02 2001 Oct 22

HILIP

SAA7240

CONTENTS

1	FEATURES
1.1	General
1.2	External interfaces
1.3	CPU-related features
1.4	MPEG-2 System Processor (MSP) features
1.5	Compatibility with other devices
2	GENERAL DESCRIPTION
2.1 2.2	Limitation notes Integrated Conditional Access Module (ICAM®) licensing requirements
3	ORDERING INFORMATION
4	BLOCK DIAGRAMS
5	PINNING INFORMATION
5.1 5.2 5.3	Pinning Pin description Pin list in numerical order
6	LIMITING VALUES
7	HANDLING
8	THERMAL CHARACTERISTICS
9	DC CHARACTERISTICS
9.1 9.2	Power saving in Sleep and Coma modes Maximum allowable load capacitance on output pins
10	APPLICATION INFORMATION
10.1 10.2	Application examples of the multi-master mode Memory configurations
11	PACKAGE OUTLINE
12	SOLDERING
12.1	Introduction to soldering surface mount packages
12.2	Reflow soldering
12.3	Wave soldering
12.4 12.5	Manual soldering Suitability of surface mount IC packages for wave and reflow soldering methods
13	DATA SHEET STATUS
14	DEFINITIONS
15	DISCLAIMERS
16	PURCHASE OF PHILIPS I ² C COMPONENTS

SAA7240

1 FEATURES

1.1 General

- Conditional access descrambling Digital Video Broadcasting (DVB) compliant, MULTI2 compliant and ICAM^{® (1)} compliant
- Targeted to BSkyB 3.00 and Canal⁺ basic box 3.02 and web box 1.01 applications
- Stream demultiplexing: Transport Stream (TS), Packetized Elementary Stream (PES), Program Stream (PS) and Proprietary data streams
- Internal 32-bit MIPS RISC-based CPU, supporting MIPS16 instruction set and running at 81 MHz
- Low-power Sleep modes supported across the chip
- Support for external co-processor
- 0.25 µm technology
- Power supply of 2.5 V for the core and 3.3 V for the peripherals, to be TTL level compatible
- Comprehensive driver software and development tool support
- Package: SQFP208.

1.2 External interfaces

The SAA7240 supports the following external interfaces:

- Versatile transport stream input/output at 13.5 Mbytes/s configurable in parallel or serial mode. Interfaces to IEEE 1394 devices (such as Philips PDI 1394 chip-set) in full-duplex mode and to external descramblers through a Common Interface (CI) device. The following interfaces are supported:
 - 3 parallel TS input/output ports
 - 2 parallel TS input/output ports and 3 serial TS ports
 - 1 parallel TS input/output port and 5 serial TS ports
 - 6 serial TS input/output ports.
- A microcontroller extension bus, supporting:
 - 16-bit and 32-bit data buses
 - Up to 64 Mbytes addressing range
 - Synchronous Dynamic RAM (SDRAM) interface
 - Dynamic RAM interface
 - Read Only Memory (ROM) interface
 - Flash memory interface
 - Interface to various peripherals
- Integrated Conditional Access Module (ICAM[®]) is an intellectual property of News Data System Corporation.

- Synchronous interface to communicate with the integrated MPEG Audio Video Graphics Decoder (AVGD) SAA7215 at 40.5 MHz
- Large endian and small endian byte addressing
- A multi-master mode (master and slave modes).
- 2-channel Direct Memory Access (DMA) for fast block move to/from any memory location
- Up to 12 chip selects available, some can be configured as general purpose ports
- An IEEE 1284 interface (Centronics) with DMA engine supporting master and slave modes. Usable as a general purpose port
- Two UART (RS232) data ports with DMA capabilities (at 187.5 kbit/s), including hardware flow control signals RXD, TXD, RTS and CTS for modem support
- A Synchronous Serial Interface (SSI) to connect an off-chip modem analog front-end
- An elementary UART with DMA capabilities, dedicated to front panel devices for instance
- Two dedicated smart card reader interfaces (ISO 7816 compatible) with DMA capabilities. One interface is intended for the conditional access and is shared with the Integrated Conditional Access Module (ICAM) when ICAM is enabled; the second interface may be used for pay-per-view
- Two I²C-bus master/slave transceivers with DMA capabilities, supporting the standard (100 kbit/s) and fast (400 kbit/s) I²C-bus modes
- 32-bit general purpose port
- Eight interrupt inputs
- Parallel audio video interface to the MPEG AVGD decoder SAA7215
- One Pulse Width Modulated (PWM) output with 8-bit resolution
- An Extended JTAG (EJTAG) interface for board test support.

1.3 CPU-related features

The SAA7240 contains an embedded RISC CPU, which incorporates the following features:

- A 32-bit PR3930 core, running at 81 MHz
- Support for large and small byte addressing modes; is ready for Windows^{® (1)}CE and pSOS^{® (2)} operating systems
- 8-kbyte 2-way set of associative instruction cache
- 4-kbyte 4-way set of associative data cache
- A programmable low-power mode, including wake-up on interrupt
- A Memory Management Unit (MMU) with 32 odd/even entries and variable page sizes
- Multiply/accumulate/divide unit with fast multiply/accumulate for 16-bit and 32-bit operands
- Two fully independent 24-bit timers and one 24-bit timer, including watchdog facilities
- A real-time clock unit (active in Sleep mode)
- Built-in software debug support unit as part of extended JTAG debug interface
- On-chip SRAM of 4 kbytes for storing code that needs fast execution.

1.4 MPEG-2 System Processor (MSP) features

- A flexible re-router to support many combinations of the transport stream input/output interfaces:
 - Connection to serial or parallel Common Interface IC
 - Connection to serial or parallel 1394 IC in full-duplex mode
 - Static dual front-end handling of channel decoders
 - A maximum frequency of up to 13.5 Mbytes/s in parallel mode and up to 81 Mbits/s in serial mode.
- A demultiplexer scheme, which is fully compliant with Canal⁺ and BSkyB specifications:
 - Hardware-based parsing of transport, program and proprietary software data streams. The maximum input rate is 13.5 Mbytes/s in parallel mode and 81 Mbits/s in serial mode
 - Up to 40, 13-bit Packet Identifier (PID) filters applied on the PID value. 32 PID filters can be dedicated to filter packets containing sections; four PID filters to filter transport packets header; four PID filters to parse audio, video, teletext and subtitle data

- 4 TS/PES packet header filters (filter condition of 3 bytes, including PID value for TS packet header and specific filter condition for PES packet header)
- 32 section filters based on a flexible number of filter conditions to retrieve PSI, SI, Private data and EPG, etc. Each section filter supports 48 filters conditions of 12 bytes; each filter condition can be negated or masked on a bit level
- 7 ECM/EMM filters stored in on-chip RAM for ICAM implementation (ECM/EMM packets are stored in on-chip RAM)
- Flexible 40 channel DMA-based storage of the 32 section sub-streams and four TS/PES data sub-streams and 4 TS/PES packet headers in external memory
- System time base management with a double counter mechanism for clock control and discontinuity handling
- Two Presentation Time Stamp (PTS)/Decoding Time Stamp (DTS) timers
- A General Purpose/High Speed (GP/HS) filter, which can serve as an alternative input from IEEE 1394 devices, for example. The IEEE 1394 GP/HS mode supports packet insertion and has an internal SRAM for storing two packets. It can also output either scrambled or descrambled TS to IEEE 1394 devices.
- A real time descrambler, supporting different descrambler algorithms and consisting of four modules:
 - A control word bank, containing 14 pairs (odd or even) of control words and a default control word
 - The DVB descrambler core, implementing the stream decipher and block decipher algorithms
 - The MULTI2 descrambler algorithm, implementing the CBC and OFB mode descrambling functions. In this mode, the maximum frequency is 9 Mbytes/s (72 Mbits/s)
 - The Integrated Conditional Access Module (ICAM), including an ISO 7816 compliant UART to interface the conditional access smart card.

1.5 Compatibility with other devices

The SAA7240 seamlessly interfaces to the integrated MPEG AVGD decoder SAA7215HS. It is also backward compatible with the other devices of the family. The following modes/combinations are supported:

- SAA7240 with SAA7215HS seamless
- Pinning compatibility with the SAA7219HS.

⁽¹⁾ Windows is a registered trademark of Microsoft Corporation

⁽²⁾ $\ \mbox{pSOS}$ is a registered trademark of Wind River Systems, Inc.

2 GENERAL DESCRIPTION

The SAA7240 is a transport MPEG-2 source decoder designed for application in set-top boxes in a Digital Video Broadcast (DVB) environment. It is targeted to BSkyB 3.00 and Canal⁺ basic box and web box applications. The device is part of a comprehensive source decoding kit that contains all the hardware and software required to receive and decode MPEG-2 transport streams, including descrambling and demultiplexing.

In addition, it includes a PR3930 core, which is a 32-bit MIPS RISC-based CPU core supporting the MIPS16 instruction set (to reduce memory requirements) and several peripheral interfaces such as UARTs, I²C-bus units, an IEC 1883, and an IEEE 1284 (Centronics) interface. The SAA7240 is therefore capable of performing all controller tasks in digital television applications. Furthermore, the SAA7240 complies with DVB, ICAM and MULTI2 descrambler standards.

The SAA7240 receives transport streams through a versatile stream input interface capable of handling both byte-parallel and bit-serial streams, in various formats, supporting data streams up to and including 13.5 Mbytes/s in parallel mode and 81 Mbits/s in serial mode. The data stream is first applied to an on-chip descrambler with a DVB descrambling algorithm, on the basis of 14 control word pairs stored in an on-chip RAM.

Demultiplexing is subsequently applied to the data stream, to separate up to 40 individual data streams. The demultiplexer section includes clock recovery and timebase management. Program Specific Information (PSI), Service Information (SI), Conditional Access (CA) messages and private data are selected and stored in external memory, for subsequent off-line processing by the internal PR3930 CPU core.

To support advanced board testing facilities, the SAA7240 includes Boundary Scan Test (BST) hardware, according to the JTAG standard. The device features flexible

low-power Sleep modes, which independently control the activity of each functional block and can sustain set-top box standby functionality, thus eliminating the need for a separate front-panel controller.

The SAA7240 requires a supply voltage of 3.3 V for the I/O pads and a supply voltage of 2.5 V for the core.

2.1 Limitation notes

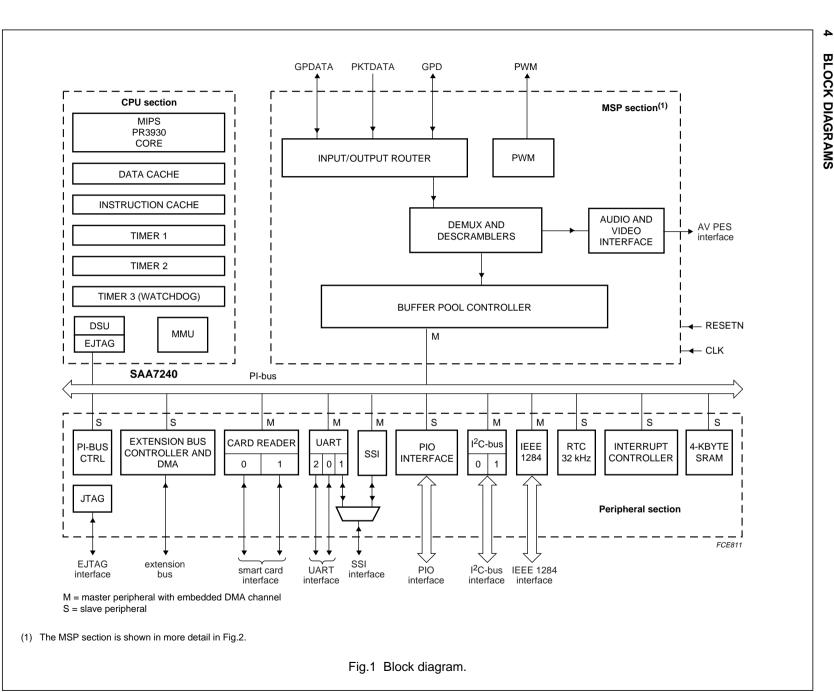
Although the most advanced techniques and sophisticated tools are used during the design and validation phases, some design limitations giving some restrictions for specific applications might be discovered during the characterization of the SAA7240 and during its life time. If such an eventuality occurs, a limitation note will be issued, describing the deviation against the specification and the advised work-around if any. This limitation note, also sometimes called 'anomaly sheet' or 'bug list', is given to customers when they are in the initial design-in phase. Once the design-in is in production phase, customers are informed about any new limitation if the severity is estimated to be high.

Please contact your nearest Philips Semiconductor sales office for more information.

2.2 Integrated Conditional Access Module (ICAM[®]) licensing requirements

Companies planning to use ICAM[®] implementation in any final product must obtain a license from News Data System Corporation before designing such products. Additional per-chip royalties may be required and are to be paid by the purchaser to News Data System Corporation. For information on the Integrated Conditional Access Module features, a non-disclosure agreement must be signed with Philips Semiconductors to get the ICAM[®] specification.

Please contact your nearest Philips Semiconductor sales office for more information.

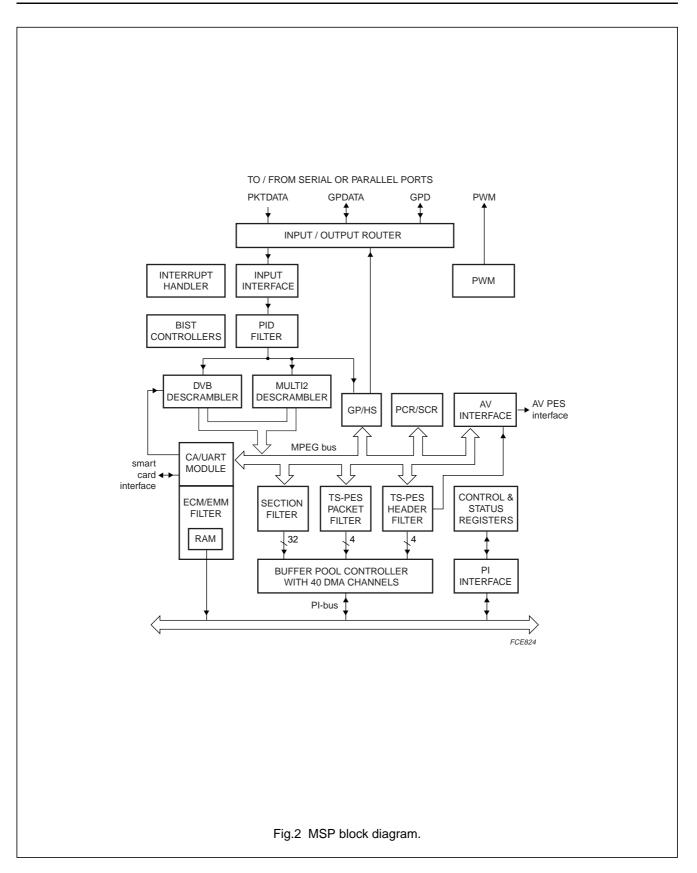

3 ORDERING INFORMATION

TYPE NUMBER		PACKAGE	
	NAME	DESCRIPTION	VERSION
SAA7240	SQFP208	plastic shrink quad flat package, 208 leads (lead length 1.3 mm); body $28 \times 28 \times 34$ mm; high stand-off height	SOT316-1

Philips Semiconductors

MPEG-2 **Transport RISC** processor

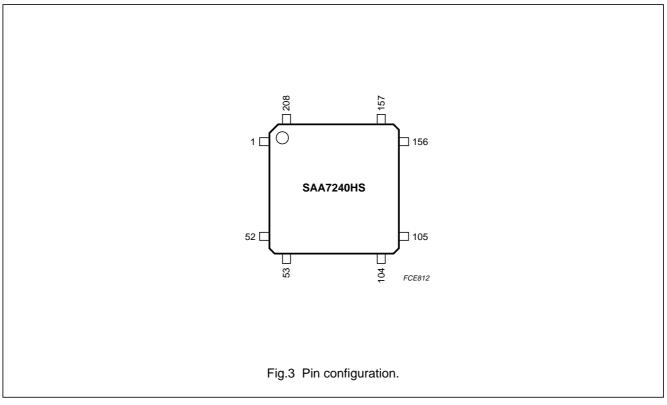
BLOCK DIAGRAMS


റ

_

2001 Oct 22

Product specification



SAA7240

5 PINNING INFORMATION

5.1 Pinning

SYMBOL	PIN	TYPE	DESCRIPTION	BUFFER TYPE	RESET STATE
Programmable input/	output port	•			•
PIO[0:7]/INT[0:7]	105 to 112	I/O	I/O lines or interrupt inputs	bidirectional; CMOS input; 2 mA output drive	Z
PIO8	113	I/O	I/O line	bidirectional; CMOS input; 2 mA output drive	Z
PIO9	114	I/O	I/O line	bidirectional; CMOS input; 2 mA output drive	Z
PIO10/BPN	116	I/O	I/O line or bus pre-empt; this requires the bus owner to release the bus after the current transfer	bidirectional; CMOS input; 2 mA output drive	Z
PIO11/VPP	117	I/O	I/O line or VPP; control signal for the supply voltage (ICAM)	bidirectional; CMOS input; 2 mA output drive	Z
PIO12/C8	118	I/O	I/O line or IO data for conditional access (ICAM)	bidirectional; CMOS input; 8 mA output drive; open-drain;	Z
PIO13/C4	119	I/O	I/O line or IO data for conditional access (ICAM)	bidirectional; 8 mA output drive; open-drain	Z
PIO14/BRN	120	I/O	I/O line or bus request input	bidirectional; CMOS input; 2 mA output drive	Z
PIO15/BGN	121	I/O	I/O line or bus grant output	bidirectional; CMOS input; 2 mA output drive	Z
PIO[16:31]/D[16:31]	20 to 11, 9 to 4, 2	I/O	I/O lines or upper data bus in 32-bit configuration	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z
Extension bus interfa	ce				
D[0:15]	41 to 28, 25 to 21	I/O	lower 16-bit data bus	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z
A[0:21]	63 to 90	0	address bus	3-state output; 2 mA output drive	LOW
A[22:25] ⁽¹⁾		n.a.	address bus extension shared with the IEEE 1284 interface	n.a.	n.a.
RASON	49	0	row access strobe for DRAM and SDRAM bank 0	3-state output; 2 mA output drive	HIGH
RAS1N/DCS1N	48	0	row access strobe for DRAM and SDRAM bank 1 or SDRAM chip select bank 1	3-state output; 2 mA output drive	HIGH
LCASN/LBA#/SIZE0	46	0	column access strobe lower byte	3-state output; 2 mA output drive	HIGH

SAA7240

Product specification

ဖ

_

Pin description

2001
Oct 22

_

SYMBOL	PIN	TYPE	DESCRIPTION	BUFFER TYPE	RESET STATE
MLCASN/BAA#/SIZE1	45	0	column access strobe mid lower byte	3-state output; 2 mA output drive	HIGH
MUCASN/SIZE2	44	0	column access strobe mid upper byte	3-state output; 2 mA output drive	HIGH
UCASN	42	0	column access strobe upper byte	3-state output; 2 mA output drive	HIGH
WEN	62	0	write enable	3-state output; 2 mA output drive	HIGH
DCS0N	47	0	chip select for SDRAM bank 0	3-state output; 2 mA output drive	HIGH
CS[0:8]N	56 to 50, 60, 61	0	chip select	3-state output; 2 mA output drive	HIGH
CS[10:9]N ⁽¹⁾		n.a.	chip select extension shared with the IEEE 1284 interface	n.a.	n.a.
OEN/TSN	58	0	output enable or Transfer Start indication	3-state output; 2 mA output drive	HIGH
DTACK	59	I	data termination acknowledge	CMOS input	Z
CLK	91	0	40.5 MHz clock	2 mA output drive	Т
UART 0 interface	•	•			•
TXD0	142	0	UART 0 transmit data line	2 mA output drive	HIGH
RXD0	141	I	UART 0 receive data line	CMOS input	Z
RTSN0	143	0	UART 0 request to send	2 mA output drive	HIGH
CTSN0	144	I	UART 0 clear to send	CMOS input	Z
UART 1 and SSI interf	ace	•			
TXD1/V34_TXD ⁽²⁾	138	0	transmit data line or transmit serial data to the CODEC	2 mA output drive	HIGH
RXD1/V34_RXD ⁽²⁾	137	I	receive data line or receive serial data from CODEC	CMOS input	Z
RTSN1/V34_FS ⁽²⁾	139	I/O	request to send (output) or Frame synchronization reference from CODEC (input)	bidirectional; CMOS input; 2 mA output drive	HIGH
CTSN1/V34_CLK ⁽²⁾	140	I	clear to send or serial input clock from CODEC (up to 3.375 MHz)	CMOS input	Z
MCLK	146	0	master clock to the CODEC (up to 36.864 MHz)	2 mA output drive	Т
UART 2 interface					
TXD2	136	0	UART 2 transmit data line	2 mA output drive	HIGH
RXD2	135	1	UART 2 receive data line	CMOS input	Z

MPEG-2 Transport RISC processor

2001
õ
94 22

<u>_</u>

_

SYMBOL	PIN	TYPE	DESCRIPTION	BUFFER TYPE	RESET STATE
I ² C-bus 0 interface					
SDA0	150	I/O	data line	bidirectional; CMOS input; open-drain; 8 mA output drive	Z
SCL0	149	I/O	clock line	bidirectional; CMOS input; open-drain; 8 mA output drive	Z
I ² C-bus 1 interface					ł
SDA1	148	I/O	data line	bidirectional; CMOS input; open-drain; 8 mA output drive	Z
SCL1	147	I/O	clock line	bidirectional; CMOS input; open-drain; 8 mA output drive	Z
Smart card 0 interfa	ice				
SC_I/O0	134	I/O	I/O line	bidirectional; CMOS input; open-drain; 8 mA output drive	Z
CLK_CARD0	128	0	clock to the card	2 mA output drive	LOW
CMDVCCN0	129	0	command of the card power supply	2 mA output drive	HIGH
RSTIN0	132	0	reset of the card	2 mA output drive	HIGH
OFFN0	133	I	card presence detection	CMOS input	Z
Smart card 1 interfa	ice				
SC_I/O1	126	I/O	I/O line	bidirectional; CMOS input; open-drain; 8 mA output drive	Z
CLK_CARD1	122	0	clock to the card	2 mA output drive	LOW
CMDVCCN1	123	0	command of the card power supply	2 mA output drive	HIGH
RSTIN1	124	0	reset of the card	2 mA output drive	HIGH
OFFN1	125	I	card presence detection	CMOS input	Z
Parallel or serial tra	nsport input in	terface	rom the front-end		
PKTDATA[0:7]	164 to 157	I	8-bit primary TS data input	CMOS input	Z
PKTSTROBE	154	I/O	byte strobe or bit strobe	bidirectional; CMOS input; 2 mA output drive	Z
PKTVALID	156	I	data valid or bit stream word select	CMOS input	Z
PKTSYNC	155		packet synchronization		Z

MPEG-2 Transport RISC processor

SYMBOL	PIN	TYPE	DESCRIPTION	BUFFER TYPE	RESET STATE
GP/HS interface (1 p	parallel port or 2	2 serial	ports)		1
GPDATA[0:7]	174 to 166	I/O	GP/HS data bus	bidirectional; CMOS input; 2 mA output drive	Z
GPSYNC	176	I/O	GP/HS synchronization	bidirectional; CMOS input; 2 mA output drive	Z
GPVALID	175	I/O	GP/HS valid	bidirectional; CMOS input; 2 mA output drive	Z
GPSTROBE	177	I/O	GP/HS strobe	bidirectional; CMOS input; 2 mA output drive	Z
Audio/video interfac	ce				
AVD0/STRAP0	103	I/O	MPEG audio/video data stream output port 0; latched in PIO_STRAP register during reset	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z
AVD1/STRAP1	102	I/O	MPEG audio/video data stream output port 1; latched in PIO_STRAP register during reset	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z
AVD2/STRAP2	101	I/O	MPEG audio/video data stream output port 2; latched in PIO_STRAP register during reset	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z
AVD3/STRAP3	100	I/O	MPEG audio/video data stream output port 3; latched in PIO_STRAP register during reset	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z
AVD4/BIG	99	I/O	MPEG audio/video data stream output port 4; latched in PIO_STRAP register during reset	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z
AVD5/BOOTCS0	98	I/O	MPEG audio/video data stream output port 5; latched in PIO_STRAP register during reset	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z
AVD6/BOOTW1	97	I/O	MPEG audio/video stream data output port 6; latched in PIO_STRAP register during reset	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z
AVD7/BOOTW0	96	I/O	MPEG audio/video stream data output port 7; latched in PIO_STRAP register during reset	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z
A_STROBE	94	0	audio data strobe in the AVD stream	2 mA output drive	LOW
V_STROBE	93	0	video data strobe in the AVD stream	2 mA output drive	LOW
AV_ERROR	95	0	flag for bit stream error (active HIGH)	2 mA output drive	LOW

SAA7240

Product specification

_

12

N
õ
O.
-
0
д
22

. .

_

SYMBOL	PIN	TYPE	DESCRIPTION	BUFFER TYPE	RESET STATE
IEEE 1284 or transport	t stream inte	erface			
GPD0/TS_DAT0	190	I/O	parallel data bus or data for serial TSS2_in interface	bidirectional; CMOS input; 2 mA output drive	Z
GPD1/TS_SYN0	191	I/O	parallel data bus or sync for serial TSS2_in interface	bidirectional; CMOS input; 2 mA output drive	Z
GPD2/TS_VAL0	192	I/O	parallel data bus or data valid for serial TSS2_in interface	bidirectional; CMOS input; 2 mA output drive	Z
GPD3/TS_CK0	193	I/O	parallel data bus or clock for serial TSS2_in interface	bidirectional; CMOS input; 2 mA output drive	Z
GPD4/TS_VAL1	194	I/O	parallel data bus or data valid for serial CI_out interface	bidirectional; CMOS input; 2 mA output drive	Z
GPD5/TS_SYN1	195	I/O	parallel data bus or sync for serial CI_out interface	bidirectional; CMOS input; 2 mA output drive	Z
GPD6/TS_DAT1	196	I/O	parallel data bus or data for serial CI_out interface	bidirectional; CMOS input; 2 mA output drive	Z
GPD7/TS_CK1	197	I/O	parallel data bus or clock for serial CI_out interface	bidirectional; CMOS input; 2 mA output drive	Z
NSELECTIN/TS_DAT2	199	I/O	host to peripheral select line or data for serial CI_in interface	bidirectional; CMOS input; 2 mA output drive	Z
NINIT/TS_SYN2	200	I/O	host to peripheral control line or sync for serial CI_in interface	bidirectional; CMOS input; 2 mA output drive	Z
NSTROBE/TS_VAL2	201	I/O	host to peripheral strobe line or data valid for serial CI_in interface	bidirectional; CMOS input; 2 mA output drive	Z
NACK/CS10N/TS_CK2	202	I/O	peripheral acknowledge line or clock for serial CI_in interface or chip select	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z
BUSY/CS9N	203	I/O	peripheral busy line or chip select	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z
PERROR/A25	204	I/O	peripheral error or address line	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z
SELECT/A24	205	I/O	peripheral on-line or address line	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z
NAUTOF/A23	206	I/O	peripheral error line or address line	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z

Philips Semiconductors

MPEG-2 Transport RISC processor

Product specification

SAA7240

 $\frac{1}{3}$

2001
O ct
22

_

SYMBOL	PIN	TYPE	DESCRIPTION	BUFFER TYPE	RESET STATE
NFAULT/A22	207	I/O	host to peripheral control line or address line	bidirectional; CMOS input; 3-state output; 2 mA output drive	Z
DIR1284	208	0	direction control of the external buffers	2 mA output drive	LOW
PWM interface					
PWM0	165	0	PWM output for VCXO control	open-drain; 8 mA output drive	LOW
System interface		•			
RESETN	1	I/O	general system reset; active LOW; the pad is asserted LOW (if enabled) when the internal watch dog time-out is detected	bidirectional; CMOS input; 4 mA output drive open drain;	LOW
XTAL1	153	1	13.5 MHz crystal input	oscillator input	Т
XTAL2	152	I/O	13.5 MHz crystal output or external clock input	oscillator output	Т
JTAG and test interfa	ace				
TDO	178	0	test data output/target PC output	2 mA output drive	Z
TDI	179	1	test data input/debug interrupt	CMOS input	Z
TMS	180	1	test mode select	CMOS input	Z
TRST	181	1	test reset	CMOS input	Z
ТСК	184	I	test clock	CMOS input	Z
EJTAG interface					
DSU_CLK	185	0	DSU clock is equivalent to the processor clock; used to capture address and data from pin TDO when PC trace mode is on; is 3-stated when bit 0 or 15 of the JTAG_Control_Register is LOW or logic 0	2 mA output drive	Z
PCST[0:2]	186 to 189	0	CPU status (debug mode, pipeline stall and occurrence of exception)	2 mA output drive	Z

SAA7240

Product specification

Philips Semiconductors

1 4

200	
000	
# 22	

SYMBOL	PIN	TYPE	DESCRIPTION	BUFFER TYPE	RESET STATE
Power supplies			· · ·		
V _{DDA}	151	S	2.5 V analog supply voltage for the PLL and oscillator		n.a.
V _{DDC}	27, 79, 130, 182	S	2.5 V supply voltage for the core		n.a.
V _{DDP}	3, 17, 31, 43, 66, 80, 92, 115, 145, 187	S	3.3 V supply voltage for interface I/O pads		n.a.
V _{SSC}	26, 78, 131, 183	S	ground for the core		n.a.
V _{SSP}	10, 23, 37, 57, 72, 86, 104, 127, 170, 190	S	ground for the interface pads		n.a.

Notes

1. These signals are internal.

2. Shared with UART 1 and SSI.

Product specification

MPEG-2 Transport RISC processor

Philips Semiconductors

_

5.3 Pin list in numerical order

Table 2	Numbered list of SAA7240 pins

Table 2 Numbered list of SAA7240 pins				
PIN	NAME			
1	RESETN			
2	PIO31/D31			
3, 17, 31, 43, 66, 80, 92, 115, 145, 187	V _{DDP}			
4	PIO30/D30			
5	PIO29/D29			
6	PIO28/D28			
7	PIO27/D27			
8	PIO26/D26			
9	PIO25/D25			
10, 23, 37, 57, 72, 86, 104, 127, 170, 198	V _{SSP}			
11	PIO24/D24			
12	PIO23/D23			
13	PIO22/D22			
14	PIO21/D21			
15	PIO20/D20			
16	PIO19/D19			
18	PIO18/D18			
19	PIO17/D17			
20	PIO16/D16			
21	D15			
22	D14			
24	D13			
25	D12			
26, 78, 131, 183	V _{SSC}			
27, 79, 130, 182	V _{DDC}			
28	D11			
29	D10			
30	D9			
32	D8			
33	D7			
34	D6			
35	D5			
36	D4			
38	D3			
39	D2			
40	D1			
41	D0			
	·]			

PIN	NAME
42	UCASN
44	MUCASN/SIZE2
45	MLCASN/BAA#/SIZE1
46	LCASN/LBA#/SIZE0
47	DCS0N
48	RAS1N/DCS1N
49	RASON
50	CS6N
51	CS5N
52	CS4N
53	CS3N
54	CS2N
55	CS1N
56	CS0N
58	OEN/TSN
59	DTACK
60	CS7N
61	CS8N
62	WEN
63	AO
64	A1
65	A2
67	A3
68	A4
69	A5
70	A6
71	A7
73	A8
74	A9
75	A10
76	A11
77	A12
81	A13
82	A14
83	A15
84	A16
85	A17
87	A18
88	A19
89	A20
90	A21

PIN	NAME
91	CLK
93	V_STROBE
94	A_STROBE
95	AV_ERROR
96	AVD7/BOOTW0
97	AVD6/BOOTW1
98	AVD5/BOOTCS0
99	AVD4/BIG
100	AVD3/STRAP3
101	AVD2/STRAP2
102	AVD1/STRAP1
103	AVD0/STRAP0
105	PIO0/INT0
106	PIO1/INT1
107	PIO2/INT2
108	PIO3/INT3
109	PIO4/INT4
110	PIO5/INT5
111	PIO6/INT6
112	PIO7/INT7
113	PIO8
114	PIO9
116	PIO10/BPN
117	PIO11/VPP
118	PIO12/C8
119	PIO13/C4
120	PIO14/BRN
121	PIO15/BGN
122	CLK_CARD1
123	CMDVCCN1
124	RSTIN1
125	OFFN1
126	SC_I/O1
128	CLK_CARD0
129	CMDVCCN0
132	RSTIN0
133	OFFN0
134	SC_I/O0
135	RXD2
136	TXD2
137	RXD1/V34_RXD

PIN	NAME
138	TXD1/V34_TXD
139	RTSN1/V34_FS
140	CTSN1/V34_CLK
141	RXD0
142	TXD0
143	RTSN0
144	CTSN0
146	MCLK
147	SCL1
148	SDA1
149	SCL0
150	SDA0
151	V _{DDA}
152	XTAL2
153	XTAL1
154	PKTSTROBE
155	PKTSYNC
156	PKTVALID
157	PKTDATA7
158	PKTDATA6
159	PKTDATA5
160	PKTDATA4
161	PKTDATA3
162	PKTDATA2
163	PKTDATA1
164	PKTDATA0
165	PWM0
166	GPDATA7
167	GPDATA6
168	GPDATA5
169	GPDATA4
171	GPDATA3
172	GPDATA2
173	GPDATA1
174	GPDATA0
175	GPVALID
176	GPSYNC
177	GPSTROBE
178	TDO
179	TDI
180	TMS

PIN	NAME
181	TRST
184	ТСК
185	DSU_CLK
186	PCST0
188	PCST1
189	PCST2
190	GPD0/TS_DAT0
191	GPD1/TS_SYN0
192	GPD2/TS_VAL0
193	GPD3/TS_CK0
194	GPD4/TS_VAL1
195	GPD5/TS_SYN1

PIN	NAME
196	GPD6/TS_DAT1
197	GPD7/TS_CK1
199	NSELECTIN/TS_DAT2
200	NINIT/TS_SYN2
201	NSTROBE/TS_VAL2
202	NACK/CS10N/TS_CK2
203	BUSY/CS9N
204	PERROR/A25
205	SELECT/A24
206	NAUTOF/A23
207	NFAULT/A22
208	DIR1284

SAA7240

6 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V _{DDP}	supply voltage for the I/O buffers	-0.5	4.0	V
V_{DDC}, V_{DDA}	supply voltages for the core, PLL and oscillator	-0.5	3.0	V
VI	input voltage on any pin with respect to ground (V_{SS})	-0.5	$V_{DD} + 0.5$	V
P _{tot}	total power dissipation (based on package transfer, not IC power consumption)	-	P _{tot(max)} ⁽¹⁾	W
I _{DDC}	core supply current	-	500 ⁽²⁾	mA
I _{DDP}	supply current for the I/O buffers	_	330 ⁽³⁾	mA
T _{stg}	storage temperature	-55	150	°C
T _{amb}	ambient temperature	0	70	°C
Tj	junction temperature	-	125	°C

Notes

- 1. System designers should be aware that:
 - a) The IC junction temperature (T_j) is greatly influenced by the environment and the Printed-Circuit Board (PCB) layout thermal behaviour. Total allowable power P_{tot} in the customer application depends on its thermal characteristics; thermal resistance from junction to air; (R_{th(j-a)}, refer to Chapter 8) and ambient temperature T_{amb}. P_{tot(max)} = (T_{j(max)} T_{amb})/R_{th(j-a)} = P_{INT} + P_{I/O}. P_{INT} represents the internal device power (core and PLL). P_{I/O} is the power dissipation in the input and output buffers. P_{INT} depends on the user application and is limited by the maximum drive capability of the output buffers.
 - b) Table 3 gives some examples of theoretical maximum power dissipation supported by the package; the designer has to check that there is no I_{DDP} maximum current violation.
- 2. This value represents the maximum current that the power track can carry without excessive voltage drop in the internal chip. This value does not reflect the maximum current consumption of the core, which is far below this value.
- 3. This theoretical maximum value which should never be exceeded is determined when all output buffers are driving their specified maximum static drive current. In a standard application, this worst case never occurs because the output loads are mainly line capacitance and not resistive loads.

7 HANDLING

Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling CMOS integrated circuits.

8 THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	35 ⁽¹⁾	°C/W

Note

1. When the device is soldered onto a PCB, the intrinsic thermal resistance of the package is improved. The R_{th(j-a)} value depends on the PCB type; some typical values are given below:

a) For a standard PCB; R_{th(j-a)} = 32 °C/W.

b) For a 4-layer PCB; R_{th(j-a)} = 28 °C/W.

c) For a 4-layer PCB with thermal dissipation layer; $R_{th(j-a)} = 24 \text{ °C/W}$.

SAA7240

MPEG-2 Transport RISC processor

Theoretical package maximum power dissipation						
THERMAL COEFFICIENT (R _{th(j-a)})	P _{tot(max)} at T _{amb} = 70 °C	P _{tot} at T _{amb} = 50 °C	P _{tot} at T _{amb} = 25 °C			
35 °C/W	1.57 W	2.14 W	2.85 W			
32 °C/W	1.72 W	2.34 W	3.12 W			
28 °C/W	1.96 W	2.67 W	3.57 W			
24 °C/W	2.29 W	3.26 W	4.34 W			

 Table 3
 Theoretical package maximum power dissipation

9 DC CHARACTERISTICS

 V_{DDP} = 3.0 to 3.6 V; V_{DDC} = 2.25 to 2.75 V; V_{DDA} = 2.25 to 2.75 V; V_{SS} = 0 V; T_{amb} = 0 to 70 °C; all voltages with respect to V_{SS} ; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DDP}	supply voltage for the I/O buffers		3.0	3.3	3.6	V
V _{DDC}	supply voltage for the core		2.25	2.5	2.75	V
V _{DDA}	analog supply voltage for PLL and oscillator		2.25	2.5	2.75	V
I _{DDP}	supply current for the interface I/O pads	V _{DDP} = 3.3 V	-	30 ⁽¹⁾	_	mA
I _{DDC}	core supply current	V _{DDC} = 2.5 V	-	220 ⁽²⁾	-	mA
I _{DDA}	analog supply current	V _{DDA} = 2.5 V; f _{clk} = 13.5 MHz	-	2 ⁽²⁾	-	mA
I _{DDC(sleep)}	core supply current in Sleep mode	values are measured at $V_{DD(max)}$;	-	(2)	-	mA
I _{DDC(coma)}	core supply current in Coma mode	f _{clk} = 13.5 MHz	-	(2)	-	mA
Inputs					•	
VIL	LOW-level input voltage		-	-	0.8	V
V _{IH}	HIGH-level input voltage (except XTAL1)		2.0	-	V _{DDP} + 0.5	V
VIH(XTAL1)	HIGH-level input voltage (XTAL1)		2.0	_	2.5	V
IIL	input leakage current	$V_{DD} = 3.3 \text{ V}; V_{SS} < V_i < V_{DD}$	-10	+1	+10	mA
I _{IZ}	3-state input current	V _i = 2.4 or 0.4 V	-10	+1	+10	mA
I _{IZ(off)}	3-state (off-state) input current; SDA, SCL and SC_I/O	$V_{DD} = V_i = 3.6 \text{ V}$	-10	+1	+10	mA
Outputs						
V _{OH}	HIGH-level output voltage	output drive current = $I_{OH(max)}$	2.4	-	-	V
V _{OL}	LOW-level output voltage	output sink current = I _{OL(min)}	-	-	0.4	V
C _i	input capacitance		-	-	10	pF

Notes

- 1. Typical current measured on a test board running a set-top box-like application (bitstream decoding and a few on-chip peripherals activated).
- 2. The typical current in Sleep and Coma modes is given in Table 4.

SAA7240

SAVINGS

(mA)

n.a. 10

12

208

208

9.1 Power saving in Sleep and Coma modes

Table 4 shows an example of typical current savings when either the Sleep mode or Coma mode is set. The measurement is carried out on a test board running an application at room temperature with $V_{DDC} = 2.5$ V. First, the total current consumption of the SAA7240 is measured with all peripherals enabled; this value is taken as a reference. Then, the Sleep and Coma modes of the peripherals and CPU are set one at a time to measure the power consumption and determine the relevant current saving.

Table - Typical current consumption of ciccp and conta modes				
MIPS CONFIGURATION REGISTER VALUE	PERIPHERAL	TYPICAL I _{DDC} CURRENT (mA)		
0000H	no shutdown; used for reference	220 ⁽¹⁾		
0001H	CPU core in Sleep mode and peripherals active	210		
0002H	CPU core in Coma mode and peripherals active	208		

peripheral section in Coma mode and CPU active

Table 4 Typical current consumption for Sleep and Coma modes

Note

0004H

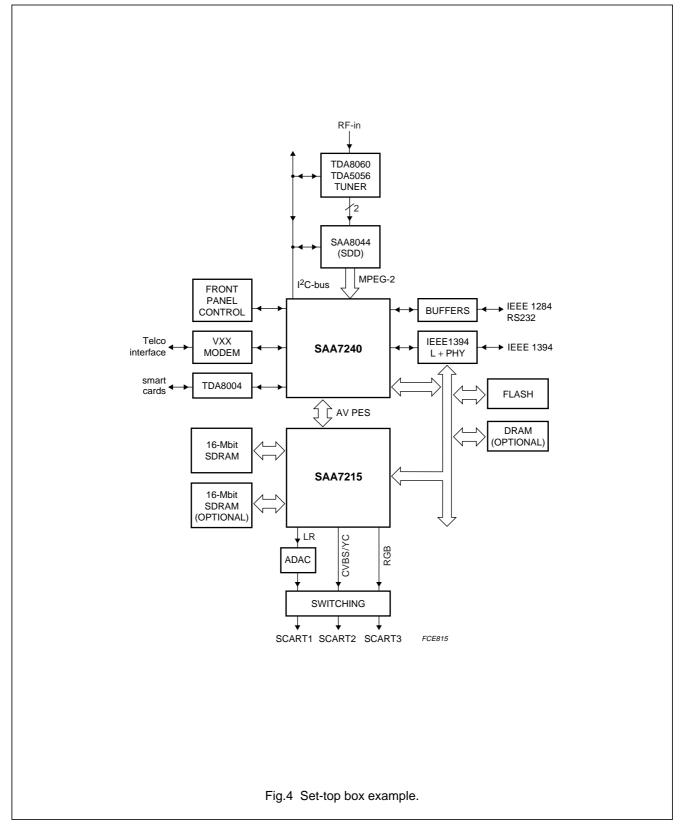
7FFFH

1. This is the measured value used to determine the power savings.

everything down; including CPU

9.2 Maximum allowable load capacitance on output pins

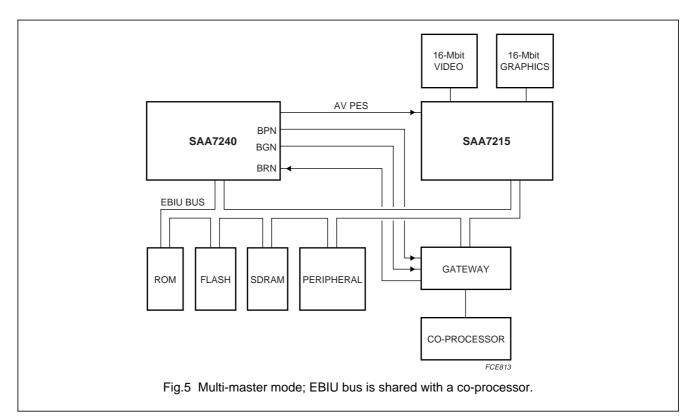
Table 5 shows the maximum load capacitances that are allowed on the output pins. These loads should not be exceeded.

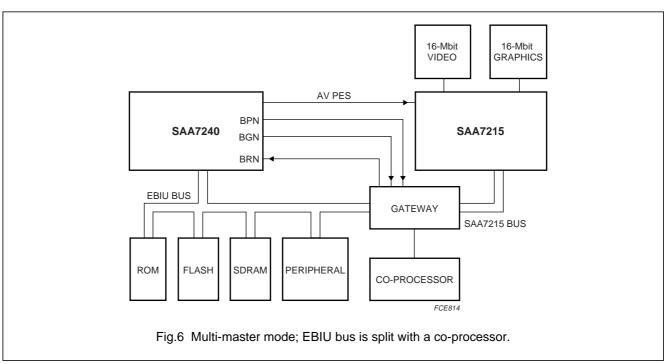

12

12

Table 5Maximum output load capacitances

OUTPUT PIN	MAXIMUM LOAD	UNIT
SDA0, SCL0, SDA1 and SCL1	400	pF
D[15:0], A[21:0], LCASN, MLCASN, MUCASN, UCASN, WEN, OEN and PIO[31:16]/D[31:16]	100	pF
CLK, MCLK, DSU_CLK and PCST[2:0]	25	рF
PKTSTROBE, GPDATA[7:0], GPSYNC, GPVALID, GPSTROBE, GPD0/TS_DAT0, GPD1/TS_SYN0, GPD2/TS_VAL0, GPD3/TS_CK0, GPD4/TS_VAL1, GPD5/TS_SYN1, GPD6/TS_DAT1, GPD7/TS_CK1, NSELECTIN/TS_DAT2, NINIT/TS_SYN2, NSTROBE/TS_VAL2 and NACK/CS10N/TS_CK2	20	pF
All other outputs	50	pF

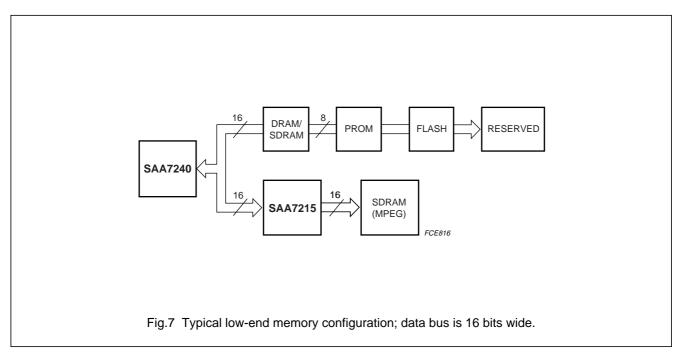

10 APPLICATION INFORMATION

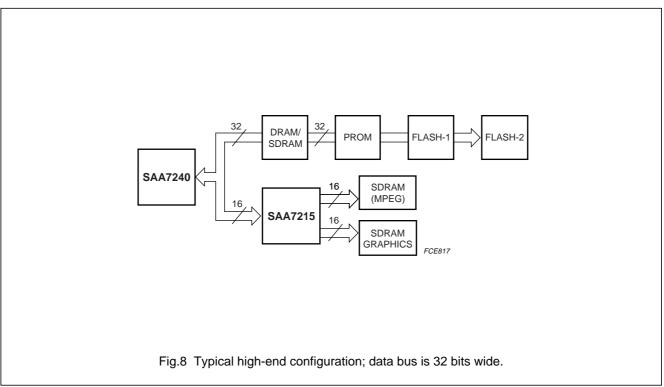


SAA7240

10.1 Application examples of the multi-master mode

The SAA7240 supports a multi-master mode. The SAA7240 is always the bus arbiter of the External Bus Interface Unit (EBIU) bus. The possible configurations are depicted in Figs 5 and 6.





SAA7240

10.2 Memory configurations

Figures 7 and 8 show some examples of typical set-top box memory configurations.

11 PACKAGE OUTLINE

SQFP208: plastic shrink quad flat package; 208 leads (lead length 1.3 mm); body 28 x 28 x 3.4 mm; high stand-off height

 \square у X А 156 104 ΖΈ е E HE (A3) ⊕wM bp pin 1 index detail X 1 Z_D→ ⊕wM = v M A bp e В D HD = v 🕅 B 5 10 mm scale DIMENSIONS (mm are the original dimensions) Α Z_D⁽¹⁾ D⁽¹⁾ E⁽¹⁾ Z_E⁽¹⁾ UNIT θ A₂ A₃ с H_D H_{E} L A₁ bp е Lp v w у max 0.20 1.39 8° 30.9 0.50 3.6 0 27 28.1 28.1 30.9 0.75 1.39 mm 4.10 0.25 0.5 1.3 0.2 0.08 0.08 0° 27.9 3.2 27.9 0 25 0.17 0.09 30.3 30.3 0 45 1 1 1 1 1 1 Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. REFERENCES OUTLINE EUROPEAN **ISSUE DATE** VERSION PROJECTION IEC JEDEC EIAJ 99-12-27 \square SOT316-1 MS-029 00-01-25

SAA7240

SOT316-1

SAA7240

12 SOLDERING

12.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"Data Handbook IC26; Integrated Circuit Packages"* (document order number 9398 652 90011).

There is no soldering method that is ideal for all surface mount IC packages. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

12.2 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.

Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 220 °C for thick/large packages, and below 235 °C for small/thin packages.

12.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
 - larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
 - smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.

The footprint must incorporate solder thieves at the downstream end.

• For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

12.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300 \,^{\circ}$ C.

When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^\circ\text{C}.$

SAA7240

12.5 Suitability of surface mount IC packages for wave and reflow soldering methods

PACKAGE	SOLDERING METHOD		
FACKAGE	WAVE	REFLOW ⁽¹⁾	
BGA, HBGA, LFBGA, SQFP, TFBGA	not suitable	suitable	
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, SMS	not suitable ⁽²⁾	suitable	
PLCC ⁽³⁾ , SO, SOJ	suitable	suitable	
LQFP, QFP, TQFP	not recommended ⁽³⁾⁽⁴⁾	suitable	
SSOP, TSSOP, VSO	not recommended ⁽⁵⁾	suitable	

Notes

- 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the "Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods".
- 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
- 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
- 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
- 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

SAA7240

13 DATA SHEET STATUS

DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

14 DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

15 DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

ICs with MPEG-2 functionality — Use of this product in any manner that complies with the MPEG-2 Standard is expressly prohibited without a license under applicable patents in the MPEG-2 patent portfolio, which license is available from MPEG LA, L.L.C., 250 Steele Street, Suite 300, Denver, Colorado 80206.

SAA7240

16 PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

SAA7240

NOTES

SAA7240

NOTES

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2001

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

753504/01/pp**32**

Date of release: 2001 Oct 22

Document order number: 9397 750 07749

SCA73

Let's make things better.

Philips Semiconductors