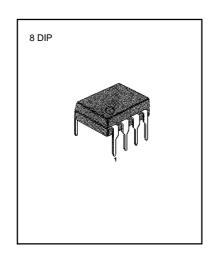
LOW POWER CONSUMPTION EARTH LEAKAGE DETECTOR

The KA2803 is designed for use in earth leakage circuit interrupters, for operation directly off the AC line in breakers. The input of the differential amplifier is connected to the secondary coil of ZCT (Zero Current Transformer). The amplified output of differential amplifier is integrated at external capacitor to gain adequate time delay that is specified in KSC4613.


The level comparator generates high level when earth leakage current is greater than some level.

FUNCTIONS

- · Differential amplifier
- Level comparator
- · Latch circuit

FEATURES

- Low power consumption P_D =5mW, 100V/200V)
- Built-in voltage regulator
- High gain differential amplifier (V_T =13.5mV)
- 1mA output current pulse to trigger SCR'S
- · Low external part count, economic
- Mini-dip package (8 Dip), high packing density
- High noise immunity, large surge margin
- Super temperature characteristic of input sensitivity
- Wide operating temperature range ($T_A = -25\,^{\circ}{\circ}$ ~ +80 $^{\circ}{\circ}$)

ORDERING INFORMATION

Device Package		Operating Temperature		
KA2803B	8 DIP	-20 ~ + 80 ℃		

APPLICATION CIRCUIT

1. Full Wave Application Circuit

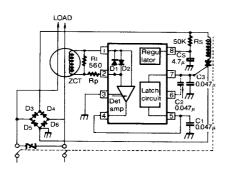


Fig. 1

2. Half Wave Application Circuit

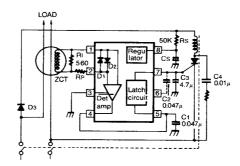


Fig. 2

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{cc}	20	V
Supply Current	Icc	8	mA
Power Dissipation	P_D	300	mW
Lead Temperature (soldering 10 sec)	T_{LEAD}	260	${\mathbb C}$
Operating Temperature	T_OPR	- 25 ~ + 80	${\mathbb C}$
Storage Temperature	T _{STG}	- 65 ~ + 150	${\mathbb C}$

ELECTRICAL CHARACTERISTICS ($T_A = 25 \, ^{\circ}\text{C}$)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Current 1	I _{cc}	V _{CC} =12V (-25℃) V _R -V _I =300mV (25℃) (80℃)		400	580 530 480	µ А µ А µ А
Trip Voltage	V _T	V _{CC} =16V(-25℃ ~80℃) V _R -V _I =X	10	13.5	17	mVrms
Differential Amplifier Output Current 1	I _{O(D)}	V _{CC} =16V (25 °C) V _R -V _I =30mV V _{OD} =1.2V	12		30	μА
Differential Amplifier Output Current 2	I _{O(D)}	V_{CC} =16V(25°C) V_{OD} =0.6V V_{R} , V_{I} short	17		37	μА
Output Current	I _O	V_{SC} =1.4V V_{OS} =0.8V V_{CC} =12V (-25°C) (+25°C) (+80°C)	-200 -100 -75			µ А µ А µ А
Latch on Voltage	V _{SCON}	V _{CC} =16V (25 °C)	0.7		1.4	V
Latch Input Current	I _{SCON}	V _{CC} =12V (25 °C)			5	μА
Output Low Current	l _{osL}	V _{CC} =12V (-25℃ ~80℃) V _{OSL} =0.2V	200			μА
Diff. Input Clamp Voltage	V _{IDC}	I _{IDC} =100mA (-25 °C ~ 80 °C)	0.4		2	V
Maximum Current Voltage	V _{SM}	I _{SM} =7mA (-25 °C)	20		28	V
Supply Current 2	I _{S2}	V _R -V _I =X(25 °C ~ 80 °C) V _{OS} =0.6			900	μА
Latch Off Supply Voltage	V _{SOFT}	V _{OS} =high(25℃)	7.0			V
Response Time	T _{ON}	V _{CC} =16V(25 °C) V _R -V _I =0.3V	2		4	msec

APPLICATION NOTE

(refer to full wave application circuit Fig. 1)

The Fig 1 shows the KA2803B connected in a typical leakage current detector system.

The power is applied to the V_{CC} terminal (Pin 8) of the KA2803B directly from the power line.

The resistor R_{S} and capacitor C_{S} are chosen so that pin 8 voltage is at least 12V.

The value of C_{S} is recommended above $1\mu\,$ F at this time.

If the leakage current is at the load, it is detected by the zero current transformer (ZCT).

The output voltage signal of ZCT is amplified by the differential amplifier of the KA2803B internal circuit and appears as half-cycle sine wave signal referred to input signal at the output of the amplifier.

The amplifier closed loop gain is fixed about 1000 times with internal feedback resistor to compensate for zero current transformer (ZCT) Variations.

The resistor R₁ should be selected so that the breaker satisfies the required sensing current.

The protection resistor R_P is not usually used put when the high current is injected at the breaker, this resistor should be used to protect the earth leakage detector IC the KA2803B.

The range of R_P is from several hundred $\,\Omega\,\,\,$ to several $k\Omega\,\,$.

The capacitor C_1 , is for the noise canceller and standard value of C_1 is 0.047μ F. Also the capacitor C_2 is noise canceller capacitance but it is not usually used.

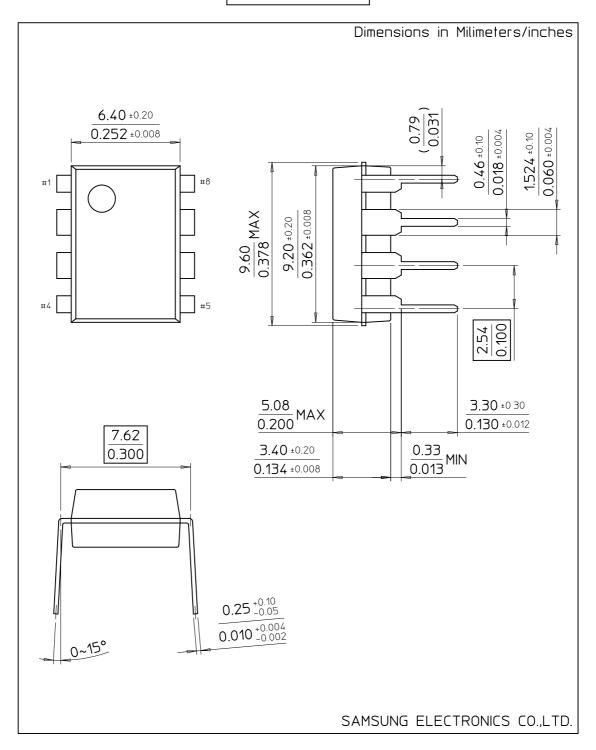
When high noise is only appeared at this system 0.047µ F capacitor may be connected between pin 6 and pin 7.

The amplified signal is finally appeared to the Pin 7 with pulse signal through the internal latch circuit of the KA2803B.

This signal drives the gate of the external SCR which energizes the trip coil which opens the circuit breaker.

The trip time of breaker is decided by the capacitor $\ensuremath{C_3}$ and the mechanism breaker.

This capacitor should be selected under $1\mu\,$ F for the required the trip time.


The full wave bridge supplies power to the KA2803B during both the positive and negative half cycles of the line voltage.

This allows the hot and neutral lines to be interchanged.

If your application want the detail information, request it on our application circuit designer of KA2803B.

8-DIP-300

