TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

# JTC83230-0017S

JTC83230-0017S: Single-Chip CMOS LSI for Calculators with Printers (applicable printer heads: M31/M31A manufactured by EPSON)

The JTC83230-0017S LSI is a single-chip CMOS LSI for use in calculators with printers. It integrates I/O logic circuits necessary to configure a calculator with 10-or 12-digit display, two-memory function, two-tax function, serial printer used to print calculation results, oscillator, and LCD drivers.

### **Features**

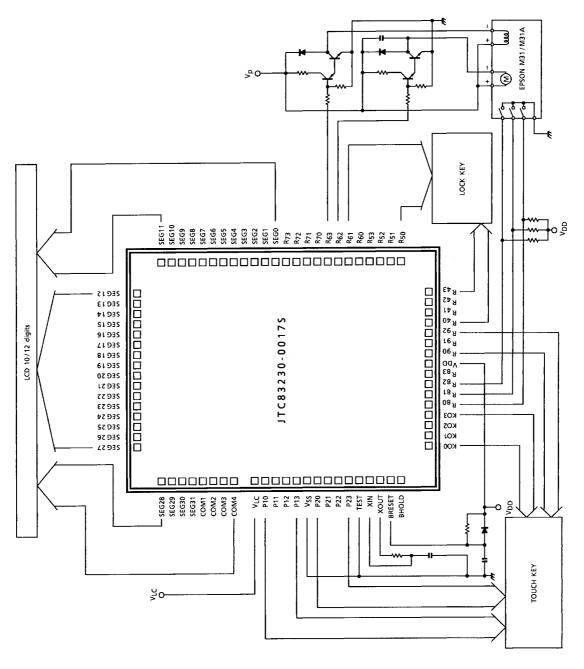
### **Operational Features**

- Print: 10 or 12 digits of data. (including decimal point.) 1 digit of minus sign, 2 digits of operational symbol. 1-color printing (black).
- Display: 10 or 12 digits of data. (including punctuation in each digit.)
   1 digit of floating minus sign, memory load, error symbol, grand total memory load, 3 digits of
- Decimal output: Decimal set lock key controls output format. Fixed decimal setting ("0", "1", "2", "3", "4", "6"), full floating decimal, ADD mode and ADD2 mode.
- Key-input buffer: 12 words
- Operation methods: Addition and subtraction: By ARITHMETIC operation
   Multiplication and division: By algebraic operation
- Function: Four function, repeat multiplication and division, mixed calculation, percentage calculation, percent discount and add-on calculation, memory calculation, delta percent calculation, add-mode calculation, mark-up/down calculation, total calculation, constant calculation, tax calculation

  Two-key rollover
- Leading zero suppression

### **Protection**

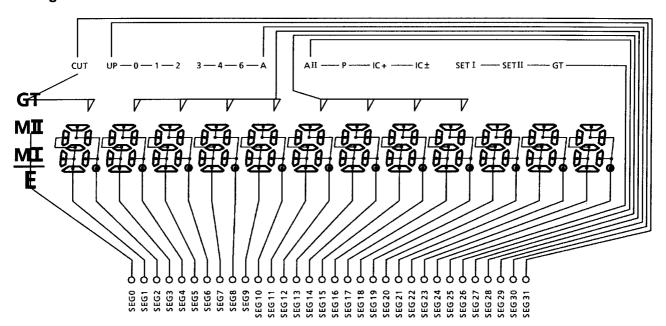
(1) In the overflow condition, all key except "C", "C/CE", "CE", "Feed", "->" key are inoperative.


1

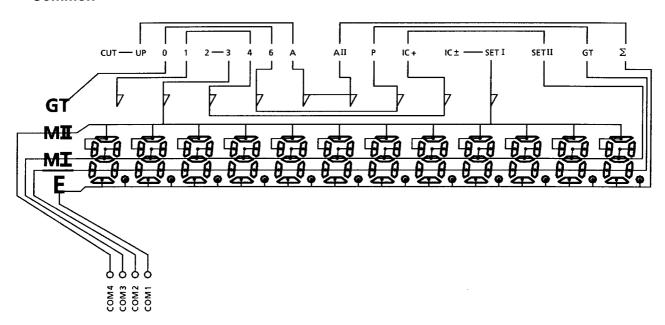
(2) Key chatter protection.

### **Auto-Clear at Power On**

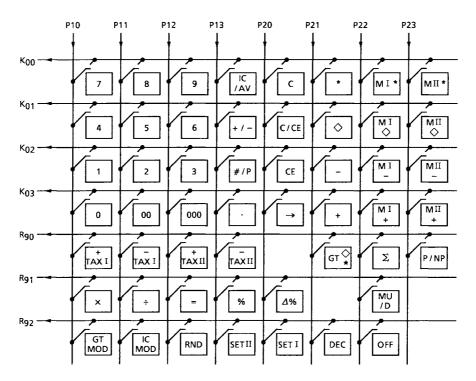
Auto-clear functions by connecting a capacitor to the RESET pin.


# **System Block Diagram**

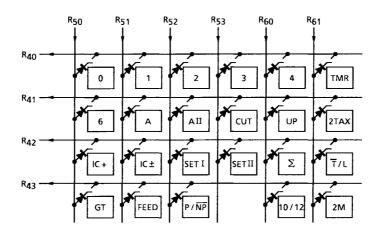



2003-02-28

# **Connection of LCD**

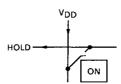

# Segment




# Common



# **Key Connection**




# **Touch Key**



**Lock Key** 

# **Touch Key Select**



**ON Key** 

# **Specification of Calculator**

# **Operation Specifications**

- (1) Operations depending on key types and modes
  - Touch key

| Key Name      | CAL                                                       | Mode                                                      | Tax Set Mode (              | SETI/II key is on)          |
|---------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------|-----------------------------|
| Mode Switch   | Touch Key Mode                                            | Lock Key Mode                                             | Touch Key Mode              | Lock Key Mode               |
| С             | Operates as clear key                                     | Operates as clear key                                     | Clears input data           | Clears input data           |
| CE            | Operates as clear entry key                               | Operates as clear entry key                               | Clears input data           | Clears input data           |
| C/CE          | Operates as clear or clear entry key                      | Operates as clear or clear entry key                      | Clears input data           | Clears input data           |
| Numeral       | Numeral Key-inputs numerals                               | Numeral Key-inputs numerals                               | Inputs numerals             | Inputs numerals             |
| OFF           | Operates as off key                                       | _                                                         | Unused                      | Unused                      |
|               | Key-inputs decimal points                                 | Key-inputs decimal points                                 | Key-inputs decimal points   | Key-inputs decimal points   |
| *,            | Operates as total or sub-total key                        | Operates as total or sub-total key                        | Unused                      | Unused                      |
| +, -<br>×, ÷  | Operates as four-function key                             | Operates as four-function key                             | Unused                      | Unused                      |
| =             | Operates as = key                                         | Operates as = key                                         | Unused                      | Unused                      |
| P/NP          | Switches print or non-print                               | _                                                         | Unused                      | Unused                      |
| RND           | Switches round-off and round-up                           | _                                                         | Unused                      | Unused                      |
| DEC           | Switches decimal points                                   | _                                                         | Unused                      | Unused                      |
| %             | Operates as % key                                         | Operates as % key                                         | Unused                      | Unused                      |
| Δ%            | Operates as delta percentage calculation key              | Operates as delta percentage calculation key              | Unused                      | Unused                      |
| MU/D          | Operates as mark-up/down key                              | Operates as mark-up/down key                              | Unused                      | Unused                      |
| IC/AVE        | Operates as item count key or average key                 | Operates as item count key or average key                 | Unused                      | Unused                      |
| #/P           | Operates as non-add-print key for left-justified printing | Operates as non-add-print key for left-justified printing | Unused                      | Unused                      |
| $\rightarrow$ | Operates as right-shift key                               | Operates as right-shift key                               | Operates as right-shift key | Operates as right-shift key |
| +/-           | Operates as sign change key                               | Operates as sign change key                               | Unused                      | Unused                      |

Oscillates only low clock frequency. (connected XTIN, XTOUT)



| Key Name                                           | CAL                                    | Mode                            | Tax Set Mode (S | SETI/II key is on) |
|----------------------------------------------------|----------------------------------------|---------------------------------|-----------------|--------------------|
| Mode Switch                                        | Touch Key Mode                         | Lock Key Mode                   | Touch Key Mode  | Lock Key Mode      |
| MI*, MII*<br>MI◊, MII◊,<br>MI−, MII−,<br>MI+, MII+ | Operates as memory function key        | Operates as memory function key | Unused          | Unused             |
| -TAXI/II                                           | Operates as –TAXI/II key               | Operates as -TAXI/II key        | Unused          | Unused             |
| +TAXI/II                                           | Operates as +TAXI/II key               | Operates as +TAXI/II key        | Unused          | Unused             |
| Σ                                                  | Operates as $\Sigma$ key               |                                 | Unused          | Unused             |
| IC MOD                                             | Operates as IC-mode key                |                                 | Unused          | Unused             |
| GT MOD                                             | Operates as GT-mode or non-GT mode key |                                 | Unused          | Unused             |
| GT <sup>◊</sup>                                    | Operates as GT key                     | Operates as GT key              | Unused          | Unused             |
| EXC                                                | Operates as EXC key                    | Operates as EXC key             | Unused          | Unused             |
|                                                    | Operates as √ key                      | Operates as √ key               | Unused          | Unused             |

# • Lock key

| Key Name                 | CAL                        | Mode                            | Tax Set Mode (             | SETI/II key is on)         |
|--------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|
| Mode Switch              | Touch Key Mode             | Lock Key Mode                   | Touch Key Mode             | Lock Key Mode              |
| 0, 1, 2, 3, 4, 6, A, AII | _                          | Switches decimal points         | Unused                     | Unused                     |
| CUT, UP                  | _                          | Switches round-off and round-up | Unused                     | Unused                     |
| IC±, IC+                 | _                          | Operates as IC±/IC+ key         | Unused                     | Unused                     |
| Σ                        | _                          | Operates as $\Sigma$ key        | Unused                     | Unused                     |
| GT                       | _                          | Switches GT-mode or non-GT mode | Unused                     | Unused                     |
| FEED                     | Operates as paper feed key | Operates as paper feed key      | Operates as paper feed key | Operates as paper feed key |
| P/NP                     | _                          | Switches print or non-print     | Unused                     | Unused                     |
| T/L                      | Selects lock key mode or   | touch kov modo                  |                            |                            |
| (Note 1)                 | Selects lock key fridge of | louch key mode.                 |                            |                            |
| 2 TAX                    | Selects single tax mode o  | r double tay mode               |                            |                            |
| (Note 1)                 | Selects single tax mode o  | i double tax illode.            |                            |                            |
| 2 M<br>(Note 1)          | Selects single memory mo   | ode or double memory mod        | de.                        |                            |

Note 1: Can switch modes only with the reset key.

# Explanation of function [00, 000]

10 or 12 key entry is invalid.

 $[\cdot]$ ......If this key is pressed after a key operation except data entry, the displays is cleared and entry of [·] is stored in memory. The decimal point is shifted for subsequent data entry. If the  $[\cdot]$  key is pressed during data entry, displays does not change.

floating except when A mode is specified. Addition or subtraction can be performed

> If these key are pressed in multiplication/division mode or in constant calculation mode, add or subtract displays data to addition/subtraction registers, then displays the result. At this time, in the operation mode multiplicand or divisor do not

These keys increment or decrement the item counter. In the following operation mode, the operations are executed, and the results are printed and displayed. At that time, addition or subtraction using the addition/subtraction register is not executed.

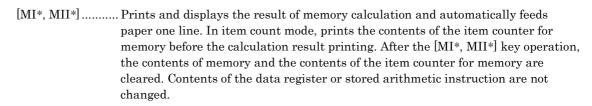
1) percent discount/add-on calculation

Percent discount/add-on with constants are calculated as above.

[0]......Prints and displays the intermediate result in addition/subtraction register. In item count mode, prints the contents of the item counter before the calculation result printing.

Contents of data register or stored arithmetic instruction are not changed.

paper one line. In item count mode, the contents of the item counter are printed before the calculation result printing.


> After this key operation, the contents of the addition/subtraction register are cleared. The contents of the item counter are cleared at the first addition/subtraction in next step. The contents of the data register or stored arithmetic instruction are not changed. When GT mode is specified, the result of addition/ subtraction is added to the GT memory.

MI-, MII-

MI+, MII+ ....... If the arithmetic instruction is not stored or if the mode is constant calculation mode, first prints the displays contents after rounding to the specified number of decimal places, performs addition/subtraction using the data in memory, then stores the result in memory. If the multiplication/division instruction is stored, executes the arithmetic instruction, rounds the result to the specified number of decimal places, prints and displays the result, adds/subtracts with the data in memory, then stores the result to memory.

> At that time, the multiplicand or divisor is stored together with the mode, constant calculation mode. When this key is pressed immediately after the [x] or [MI+, MII+, MI-, MII-] key, operation is the same as that for the [=] key; that is, adds/subtracts using data in memory. This key operation increments or decrements the item counter for memory.

[MIO, MIIO]............ Prints or displays the intermediate result of memory calculation. In item count mode, prints the contents of the item counter for memory before the calculation result printing. Contents of the data register or stored arithmetic instruction are not changed.



[=]...... Executes a stored multiplication/division instruction, rounds the result to the specified number of decimal places, prints and displays the result, then automatically feeds the paper one line. Stores the multiplicand or divisor together with constant calculation mode in memory. If an instruction is not stored in memory, no operation is performed and the previous state is held. Pressing the [=] key immediately after the [x] or [÷] key performs the following operation.

$$a \times = \dots aa$$
  
 $a \div = \dots 1$ 

$$a \times \% = ...aa/100$$
  
 $a \div \% = ...100$ 

% key operation example: percent discount/add-on calculation

[MU/D]..... If a multiplication/division instruction is stored in memory, cancels the data. The decimal point for the result is floating.

MU/D key operation example:

```
aMU/Db = .....a/(1 - (b/100)) - a
                                           (prints profit)
                     a/(1 - (b/100))
                                           (mark-up)
       c = \dots a/(1 - (c/100)) - a
                                           (prints profit)
                     a/(1 - (c/100))
                                           (mark-up)
aMU/Db +/- = .....a/(1 + (b/100)) - a
                                           (prints profit)
                     a/(1 + (b/100))
                                           (mark-down)
       c + /- = \dots a/(1 + (c/100)) - a
                                           (prints profit)
                      a/(1 + (c/100))
                                           (mark-down)
```

8 2003-02-28

| [Δ%]    | . If a multiplication/division instruct                                                                                                         | on is memorized, cancels the data.                                                                                                                                                                                         |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | $\Delta$ % key operation example:                                                                                                               |                                                                                                                                                                                                                            |
|         | $a\Delta\% \ b = b - a$                                                                                                                         |                                                                                                                                                                                                                            |
|         | (b-a)/ a                                                                                                                                        | (prints difference)                                                                                                                                                                                                        |
|         | c = c – a                                                                                                                                       | (change delta percent)                                                                                                                                                                                                     |
|         | (c - a)/ a <br>$a\Delta\% b +/- =(b + a)$                                                                                                       | (prints difference)                                                                                                                                                                                                        |
|         | $a\Delta\% b +/- =(b + a)$                                                                                                                      | (change delta percent)                                                                                                                                                                                                     |
|         | -(b + a)/ s<br>c +/- =(c + a)                                                                                                                   | (prints difference)                                                                                                                                                                                                        |
|         |                                                                                                                                                 |                                                                                                                                                                                                                            |
|         | -(c+a)/ a                                                                                                                                       | (prints difference)                                                                                                                                                                                                        |
| [+/-]   | Inverts sign of the displayed number                                                                                                            | r at key entry.                                                                                                                                                                                                            |
| [→]     | Shifts the contents of the displays t estimation calculation error, cancel                                                                      | o the right by one digit at key entry. For an s the error.                                                                                                                                                                 |
| [GT * ] |                                                                                                                                                 | the key is pressed once, calls the contents of rrent state. If the key is pressed twice, calls are them.                                                                                                                   |
| [C]     | Cancels all arithmetic instructions registers except the memory register                                                                        | and errors, clears the contents of all the r, and prints 0.C.                                                                                                                                                              |
| [CE]    | the stored arithmetic instruction or pressed after one of the following ke [MI-, MII-] [MI $\diamond$ , MII $\diamond$ ] [MI*, MII $\diamond$ ] | the contents of the displays; does not change the contents of the data register. Invalid if eys: [C] [x] [+] [+] [-] [=] [%] [\Delta\%] [MI+, MII+] [MU/D] [IC/AVE]. after the [#/P] key depends on the state before       |
| [IC+]   | Selects item count mode.                                                                                                                        |                                                                                                                                                                                                                            |
| [IC±]   | IC+Counts up by the [+] of                                                                                                                      | r [_] kov                                                                                                                                                                                                                  |
|         | IC±Counts up by the [+] k                                                                                                                       |                                                                                                                                                                                                                            |
| [Σ]     |                                                                                                                                                 | [=] or [%] key in auto accumulation calculation<br>he addition/subtraction register and                                                                                                                                    |
| [C/CE]  | $[\div]$ $[+]$ $[-]$ $[=]$ $[\%]$ $[\Delta\%]$ $[MI+, MII+]$ $[NIC/AVE]$ .                                                                      | he as the [CE] key. keys, operates same as the [C] key: [C/CE] [x] $MI-$ , $MII-$ ] [ $MI\lozenge$ , $MII\lozenge$ ] [ $MI\circledast$ , $MII\circledast$ ] [ $MU/D$ ] by after the [+/-] or the [#/P] key depends on the  |
|         | state before the keys were pressed.                                                                                                             | y after the [+/-] of the [+/1] key depends on the                                                                                                                                                                          |
| [#/P]   | register together with the # symbol key is pressed after a key except the                                                                       | ntry, prints the contents of the key entry data<br>but does not change the current state. If the<br>e numerical keys or [+/–] key, does not change<br>urrent state. If the key is pressed in clock<br>layed date and time. |

9

2003-02-28

-TAXI/II

+TAXI/II ............ Calculate included tax operation or excluded tax operation. But, only prints and does not express the tax. Prints or displays the result-value. (result-value adjusts decimal-point (TAB) setting.) Feeds the paper one line after prints.

> TAXI key operation example: (TAX = 3%)a [+TAXI].....a (3/100) (prints TAX) ..... a + (a (3/100))(included TAX) a [-TAXII]....a/(1 + 3/100) - a(prints TAX) .....a/(1 + 3/100)(excluded TAX)

If pressed at key entry after number key entry, calculate the tax as a result of calculation.

When multiplication/division instruction is stored in memory.

[P/NP]......Switches between PRINT and NON-PRINT mode. At reset, NON-PRINT mode is set. Switches mode in each time when the [P/NP] key is pressed:  $P \rightarrow NP \rightarrow P \rightarrow NP$ . In PRINT mode, displays "print mode". Valid only when the [T/L] lock key is off.

[RND] ...... Switches between round-up, round-off and half-adjust. At reset, half-adjust is set. Switches the mode in each time when the [RND] key is pressed:  $5/4 \rightarrow \downarrow \rightarrow \uparrow \rightarrow 5/4$  $\rightarrow \downarrow \rightarrow \uparrow$ . Displays round-up/round-off. Valid only when the [T/L] lock key is off.

[GT MOD] ...... Exchange GT-mode. (initial setting isn't support GT-mode.) GT mode cycles not-support and support. And displays GT-mode flag. Only touch key mode is valid.

[IC MOD]..... Exchange IC-mode. (initial setting isn't support IC-mode.) IC-mode cycles not-support, IC+ and IC±-mode. And displays IC-mode flag. Any touch key mode is valid.

[IC/AVE]...... Prints or displays the item counter, when IC/AVE key continuously pressed twice just after pressed [\*] key and [◊] key,

After first, prints or displays the item counter.

The second, the calculation of the mean number are executed, prints or displays the operation result.

After calculation of the mean number, item counter are cleared.

Example a (+) b (+) (\*) → Displays or prints addition/ c (+) Addition to total subtract register. (IC/AVE) → Displays the item counter d(+)addition/subtract register (IC/AVE) → Displays or prints e (+) f(+)(a + b + c + d + e + f + g)/7g(+)

Then even if IC-value is a negative, the calculation of the mean number.

Example a (-) (\*) → Displays or prints addition/ Addition to total b (-) subtract register. >addition/subtract c (+) $(IC/AVE) \rightarrow Displays the item counter$ register d (-) (IC/AVE) → Displays or prints (-a - b + c - d)/|4| (IC+) (-a - b + c - d)/|-2| (IC±)

each time when the [DEC] key is pressed as follows:  $F \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 6$  $\rightarrow$  A  $\rightarrow$  AII  $\rightarrow$  F  $\rightarrow$  0  $\rightarrow$  1. Displays the specified decimal point or add mode. Valid only when the  $[\overline{T}/L]$  lock key is off.

| (3) Explanation of lock key |
|-----------------------------|
|-----------------------------|

[0, 1, 2, 3]......Sets the specified decimal point. If no specification, floating is set. [4, 6, A, AII]When processing floating point data, the operation result is zero-shifted. When A mode is specified, key-entered data are multiplied by 1/100 only when the key-entered numerical value is used for addition/subtraction or memory addition/subtraction. If the [·] key is pressed during data entry, A mode is invalid. The operation result is treated the same as the specified decimal point, 2. When AII mode is specified, key-entered data are multiplied by 1/100 only when the key-entered numerical value is used for multiplication/division by [=] key. If the [·] key is pressed during data entry, AII mode is invalid. The operation result is treated the same as the specified decimal point, 2. [CUT, UP] ............ Rounds-off in CUT mode; rounds-up in UP mode; when no specification is made, half-adjusts. When a decimal point is specified, the digit (s) in the subsequent decimal place is (are) half-adjusted, rounded-off, or rounded-up (??). If floating point is specified, the value of the least significant digits which cannot be displayed is rounded off. all printing except [PF] or [#/P] key. When mode changes from non-print to print, feeds the paper one line. [IC+].....Selects item count mode. IC+.....Counts up by the [+] or [-] key. [IC±] IC±.....Counts up by the [+] key, down by the [-] key. [\Sigma] ...... If an operation is performed by the [=] or [\%] key in auto accumulation calculation mode, adds the operation result to the addition/subtraction register and increments the item counter. [GT] ...... In grand total mode, adds the total register to the GT register by the [\*] key. [DEC] keys are valid. When the  $[\overline{T}/L]$  key is on, the [NP],  $[\Sigma]$ , [GT], [IC+],  $[IC\pm]$ , [CUT], [UP], and [0, 1, 2, 3, 4, 6, A, AII] lock keys are valid. SETII the [SETI/SETII] lock key is off, store the expression data to the new tax rate. The result of tax rate is only floating-point, and not concent the decimal-point at this function. [FEED] ..... Feed paper. (after approx. 6 minutes.) [2 TAX] ...... Switches between single tax and double tax mode. When the [2 TAX] lock key is on, one tax rate can be set. (SETII and TAXII will be disabled.) When the [2 TAX] lock key is off, two tax rates can be set. [2 M]Selects single memory or double memory mode. When the [2 M] lock key is on, one memory can be used. (MII will be disabled.)

When the [2 M] lock key is off, two memories can be used.

| (4) | ON, OFF key |                                                                                |
|-----|-------------|--------------------------------------------------------------------------------|
|     | [ON]        | . If pressed in HOLD mode, cancels HOLD. At that time, cancels all arithmetic  |
|     |             | instructions and errors. The contents of the memory register and the TAX RATE  |
|     |             | before HOLD mode are retained; all other registers are cleared. While the [ON] |
|     |             | key is pressed, the [OFF] key is invalid.                                      |
|     |             |                                                                                |
|     | [OFF]       | . Forcibly enters HOLD mode (CPU sleep mode).                                  |

12 2003-02-28



# **Operation Example**

|   |     |       |       | K     | еу   |      |       |       |          |                                                          | 5       |            | 5: .         |
|---|-----|-------|-------|-------|------|------|-------|-------|----------|----------------------------------------------------------|---------|------------|--------------|
| F | 4/5 | IC    | Σ G   | T MOE | ) 10 | )/12 | 2 TAX | ( 2 M | Touch    |                                                          | Print   |            | Display      |
| F | 4/5 | OFF O | FF OF | F CAL | 1    | L2   | ON    | ON    | POWER ON |                                                          |         |            |              |
|   |     |       |       |       |      |      |       |       |          | <p:< td=""><td>F&gt;</td><td></td><td></td></p:<>        | F>      |            |              |
|   |     |       |       |       |      |      |       |       |          |                                                          |         | С          |              |
|   |     |       |       |       |      |      |       |       |          | <p:< td=""><td>E&gt;</td><td></td><td>0.</td></p:<>      | E>      |            | 0.           |
|   |     |       |       |       |      |      |       |       | 1+       |                                                          | 1.      | +          | 1.           |
|   |     |       |       |       |      |      |       |       | 2-       |                                                          | 2.      | -          | -1.          |
|   |     |       |       |       |      |      |       |       | <b>♦</b> |                                                          | -1.     | $\Diamond$ | -1.          |
|   |     |       |       |       |      |      |       |       | *        |                                                          | -1.     | *          |              |
|   |     |       |       |       |      |      |       |       |          | <p1< td=""><td>F&gt;</td><td></td><td>-1.</td></p1<>     | F>      |            | -1.          |
|   |     |       |       |       |      |      |       |       | IC/AVE   |                                                          | 2.      |            | 2.           |
| F | 4/5 | IC+ O | FF OF | F CAL | 1    | L2   | ON    | ON    | IC/AVE   |                                                          |         | ÷          |              |
|   |     |       |       |       |      |      |       |       |          |                                                          | -0.5    | *          | -0.5         |
|   |     |       |       |       |      |      |       |       | IC/AVE   |                                                          | 0.      |            | 0.           |
|   |     |       |       |       |      |      |       |       | 1+       |                                                          | 1.      | +          | 1.           |
|   |     |       |       |       |      |      |       |       | 2-       |                                                          | 2.      | -          | -1.          |
|   |     |       |       |       |      |      |       |       | <b>♦</b> | 002                                                      |         |            |              |
|   |     |       |       |       |      |      |       |       |          |                                                          | -1.     | $\Diamond$ | -1.          |
|   |     |       |       |       |      |      |       |       | IC/AVE   |                                                          | 2.      |            | 2.           |
|   |     |       |       |       |      |      |       |       | IC/AVE   |                                                          |         | ÷          |              |
|   |     |       |       |       |      |      |       |       |          |                                                          | -0.5    | *          | -0.5         |
|   |     |       |       |       |      |      |       |       | IC/AVE   |                                                          | 2.      |            | 2.           |
|   |     |       |       |       |      |      |       |       | *        | 002                                                      |         |            |              |
|   |     |       |       |       |      |      |       |       |          |                                                          | -1.     | *          |              |
|   |     |       |       |       |      |      |       |       |          | <1                                                       | PF>     |            | -1.          |
|   |     |       |       |       |      |      |       |       | IC/AVE   |                                                          | 2.      |            | 2.           |
|   |     |       |       |       |      |      |       |       | IC/AVE   |                                                          |         | ÷          |              |
|   |     |       |       |       |      |      |       |       |          |                                                          | -0.5    | *          | -0.5         |
|   |     |       |       |       |      |      |       |       | IC/AVE   |                                                          | 0.      |            | 0.           |
| F | 4/5 | OFF O | FF OF | F CAL | 1    | 12   | ON    | ON    | 3×       |                                                          | 3.      | ×          | 3.           |
|   |     |       |       |       |      |      |       |       | 4÷       |                                                          | 4.      | ÷          | 12.          |
|   |     |       |       |       |      |      |       |       | =        |                                                          | 4.      | =          |              |
|   |     |       |       |       |      |      |       |       |          |                                                          | 3.      | *          |              |
|   |     |       |       |       |      |      |       |       |          | <p1< td=""><td></td><td></td><td>3.</td></p1<>           |         |            | 3.           |
|   |     |       |       |       |      |      |       |       | 5×       |                                                          | 5.      | ×          | 5.           |
|   |     |       |       |       |      |      |       |       | 6%       |                                                          | 6.      | 용          |              |
|   |     |       |       |       |      |      |       |       |          |                                                          | 0.3     | *          |              |
|   |     |       |       |       |      |      |       |       |          | <p1< td=""><td></td><td></td><td>0.3</td></p1<>          |         |            | 0.3          |
|   |     |       |       |       |      |      |       |       | +        |                                                          |         | +          |              |
|   |     |       |       |       |      |      |       |       | ·        |                                                          | 5.3     | 90         |              |
|   |     |       |       |       |      |      |       |       |          | <p:< td=""><td></td><td>Ü</td><td>5.3</td></p:<>         |         | Ü          | 5.3          |
|   |     |       |       |       |      |      |       |       | 2÷       |                                                          | 2.      | ÷          | 2.           |
|   |     |       |       |       |      |      |       |       | 3%       |                                                          | 3.      | ·<br>%     | 2.           |
|   |     |       |       |       |      |      |       |       | 3 .      | 66 666                                                   | 6666666 | *          |              |
|   |     |       |       |       |      |      |       |       |          | <p1< td=""><td></td><td></td><td>66.666666666</td></p1<> |         |            | 66.666666666 |
|   |     |       |       |       |      |      |       |       | 2 MU/D   | \r.                                                      | 2.      | М          | 2.           |
|   |     |       |       |       |      |      |       |       | 3=       |                                                          | 3.      | M<br>%     | 2.           |
|   |     |       |       |       |      |      |       |       | 5-       |                                                          | ٥.      | =          |              |
|   |     |       |       |       |      |      |       |       |          |                                                          |         | =          |              |

Note 2: <PF> ......Paper feed

|   |       |       |   |     | Key | y     |       |     |        |               |     |    |               |
|---|-------|-------|---|-----|-----|-------|-------|-----|--------|---------------|-----|----|---------------|
| F | 4/5   | IC    | Σ | GT  |     | 10/12 | 2 TAX | 2 M | Touch  | Print         |     |    | Display       |
|   |       |       |   |     |     |       |       |     |        | 0.0618556701  | *   |    |               |
|   |       |       |   |     |     |       |       |     |        | 2.0618556701  | *   |    |               |
|   |       |       |   |     |     |       |       |     |        | <pf></pf>     |     |    | 2.0618556701  |
|   |       |       |   |     |     |       |       |     | 2∆%    | 2.            | -   |    | 2.            |
|   |       |       |   |     |     |       |       |     | 3=     | 3.            | 용   |    |               |
|   |       |       |   |     |     |       |       |     |        |               | =   |    |               |
|   |       |       |   |     |     |       |       |     |        | 1.            | *   |    |               |
|   |       |       |   |     |     |       |       |     |        | 50.           | 용   |    |               |
|   |       |       |   |     |     |       |       |     |        | <pf></pf>     |     |    | 50.           |
| F | 4/5   | OFF   | Σ | OFF | CAL | 12    | ON    | ON  | 3×     | 3.            | ×   |    | 3.            |
|   |       |       |   |     |     |       |       |     | 4÷     | 4.            | ÷   |    | 12.           |
|   |       |       |   |     |     |       |       |     | =      | 4.            | =   |    |               |
|   |       |       |   |     |     |       |       |     |        | 3.            | +   |    |               |
|   |       |       |   |     |     |       |       |     |        | <pf></pf>     |     |    | 3.            |
|   |       |       |   |     |     |       |       |     | 5×     | 5.            | ×   |    | 5.            |
|   |       |       |   |     |     |       |       |     | 6%     | 6.            | %   |    |               |
|   |       |       |   |     |     |       |       |     |        | 0.3           | +   |    |               |
|   |       |       |   |     |     |       |       |     |        | <pf></pf>     |     |    | 0.3           |
|   |       |       |   |     |     |       |       |     | +      |               | +   |    |               |
|   |       |       |   |     |     |       |       |     |        | 5.3           | ક   |    |               |
|   |       |       |   |     |     |       |       |     |        | <pf></pf>     |     |    | 5.3           |
|   |       |       |   |     |     |       |       |     | 2÷     | 2.            | ÷   |    | 2.            |
|   |       |       |   |     |     |       |       |     | 3%     | 3.            | ક   |    |               |
|   |       |       |   |     |     |       |       |     |        | 66.666666666  | +   |    |               |
|   |       |       |   |     |     |       |       |     |        | <pf></pf>     |     |    | 66.666666666  |
|   |       |       |   |     |     |       |       |     | 2 MU/D | 2.            | М   |    | 2.            |
|   |       |       |   |     |     |       |       |     | 3=     | 3.            | 8   |    | 2.            |
|   |       |       |   |     |     |       |       |     | J      | 0.0618556701  | *   |    |               |
|   |       |       |   |     |     |       |       |     |        | 2.0618556701  | +   |    |               |
|   |       |       |   |     |     |       |       |     |        | <pf></pf>     |     |    | 2.0618556701  |
|   |       |       |   |     |     |       |       |     | 2∆%    | 2.            | _   |    | 2.0010330701  |
|   |       |       |   |     |     |       |       |     | 3=     | 3.            | - % |    | ۷.            |
|   |       |       |   |     |     |       |       |     | 3-     | ٥.            | =   |    |               |
|   |       |       |   |     |     |       |       |     |        | 1.            | *   |    |               |
|   |       |       |   |     |     |       |       |     |        | 50.           | +   |    |               |
|   |       |       |   |     |     |       |       |     |        | <pf></pf>     | т   |    | 50.           |
|   |       |       |   |     |     |       |       |     | *      |               | *   |    | 50.           |
|   |       |       |   |     |     |       |       |     | Ŷ      | 122.028522336 | ^   |    | 100 000500006 |
| _ | 4 / 5 |       | ~ | ~-  |     | 1.0   | 0.17  | 017 | 0.1    | <pf></pf>     |     |    | 122.028522336 |
| F | 4/5   | OF.F. | Σ | GT  | CAL | 12    | ON    | ON  | 2+     | 2.            | +   |    | 2.            |
|   |       |       |   |     |     |       |       |     | 3+     | 3.            | +   |    | 5.            |
|   |       |       |   |     |     |       |       |     | *      | -             | T   |    |               |
|   |       |       |   |     |     |       |       |     |        | 5.            | * + |    | _             |
|   |       |       |   |     |     |       |       |     |        | <pf></pf>     |     | G1 |               |
|   |       |       |   |     |     |       |       |     |        | 3.            | -   | G1 |               |
|   |       |       |   |     |     |       |       |     |        | 4.            | -   | G1 |               |
|   |       |       |   |     |     |       |       |     |        | 5.            | -   | G1 | -12.          |
|   |       |       |   |     |     |       |       |     |        |               | Т   |    |               |

Note 2: <PF> ......Paper feed

|   |     |     |     |             | Ke   | У     |       |     |               | D: (            |               | Б.      |      |
|---|-----|-----|-----|-------------|------|-------|-------|-----|---------------|-----------------|---------------|---------|------|
| F | 4/5 | IC  | Σ   | GT          | MOD  | 10/12 | 2 TAX | 2 M | Touch         | Print           |               | Dis     | play |
|   |     |     |     |             |      |       |       |     | *             | -12.            | * +           |         |      |
|   |     |     |     |             |      |       |       |     |               | <pf></pf>       |               | GT      | -12. |
|   |     |     |     |             |      |       |       |     | GT            |                 | Т             |         |      |
|   |     |     |     |             |      |       |       |     |               | -7.             | <b>◊</b>      | GT      | -7.  |
|   |     |     |     |             |      |       |       |     |               | _               | Т             |         |      |
|   |     |     |     |             |      |       |       |     | GT            | -7.             | *             |         | 7    |
| F | 1/5 | OFF | Σ   | <b>○</b> ₽₽ | CAL  | 1.0   | ON    | ON  | M <b>I</b> +  | <pf>1</pf>      |               |         | -7.  |
| Е | 4/3 | OFF | 4   | Orr         | CAL  | 12    | OIN   | OIN | PIIT          |                 | М             |         |      |
|   |     |     |     |             |      |       |       |     |               | -7.             | +             | ΜI      | -7.  |
|   |     |     |     |             |      |       |       |     | 5             |                 | ·             | ΜI      | 5.   |
|   |     |     |     |             |      |       |       |     | M <b>II</b> + | 2               |               |         |      |
|   |     |     |     |             |      |       |       |     |               |                 | М             |         |      |
|   |     |     |     |             |      |       |       |     |               | 5.              | +             | MI, MII | 5.   |
|   |     |     |     |             |      |       |       |     | мІ◊           | 1               |               |         |      |
|   |     |     |     |             |      |       |       |     |               |                 | M             |         |      |
|   |     |     |     |             |      |       |       |     |               | -7.             | $\Diamond$    | MI, MII | -7.  |
|   |     |     |     |             |      |       |       |     | M <b>I</b> *  | 1               |               |         |      |
|   |     |     |     |             |      |       |       |     |               |                 | M             |         |      |
|   |     |     |     |             |      |       |       |     |               | -7.             | *             |         | _    |
|   |     |     |     |             |      |       |       |     | »4II∧         | <pf>2</pf>      |               | MII     | -7.  |
|   |     |     |     |             |      |       |       |     | МП◊           | 2               | М             |         |      |
|   |     |     |     |             |      |       |       |     |               | 5.              | \[ \langle \] | MII     | 5.   |
|   |     |     |     |             |      |       |       |     | MII*          | 2               | V             | 1711    | 9.   |
|   |     |     |     |             |      |       |       |     |               | _               | М             |         |      |
|   |     |     |     |             |      |       |       |     |               | 5.              | M *           |         |      |
|   |     |     |     |             |      |       |       |     |               | <pf></pf>       |               |         | 5.   |
|   |     |     |     |             |      |       |       |     | #/P           | 5.              | $\Diamond$    |         | 5.   |
|   |     |     |     |             |      |       |       |     | 2 #/P         | #2              |               |         | 2.   |
|   |     |     |     |             |      |       |       |     | #/P           | 2.              | $\Diamond$    |         | 2.   |
|   |     |     |     |             |      |       |       |     | 0÷            | 0.              |               |         | 0.   |
|   |     |     |     |             |      |       |       |     | =             | 0.              | =             |         | 0.   |
|   |     |     |     |             |      |       |       |     |               |                 | *             |         |      |
|   |     |     |     |             |      |       |       |     |               | 0.<br><pf></pf> | *             | E       | 0.   |
|   |     |     |     |             |      |       |       |     | С             | 0.              | С             | E       | ٠.   |
|   |     |     |     |             |      |       |       |     | Ŭ             | <pf></pf>       |               |         | 0.   |
| F | CUT | OFF | OFF | OFF         | SETI | 12    | ON    | ON  |               | 1               |               |         | · .  |
|   |     |     |     |             |      |       |       |     |               | 0.              | 8             |         |      |
|   |     |     |     |             |      |       |       |     |               | <pf></pf>       |               |         | 0.   |
|   |     |     |     |             |      |       |       |     | 3             |                 |               |         |      |
| F | CUT | OFF | OFF | OFF         | CAL  | 12    | ON    | ON  |               | 1               |               |         |      |
|   |     |     |     |             |      |       |       |     |               | 3.              | 용             |         |      |
|   |     |     |     |             |      |       |       |     |               | <pf></pf>       |               |         | 0.   |
|   |     |     |     |             |      |       |       |     | С             | 0.              | С             |         |      |
|   |     |     |     |             |      |       |       |     |               | <pf></pf>       |               |         | 0.   |

Note 2: <PF> ......Paper feed



|   |          |       |       |       | Ke    | y     |       |      |                | Drint           |            | Dioplay      |
|---|----------|-------|-------|-------|-------|-------|-------|------|----------------|-----------------|------------|--------------|
| F | 4/5      | IC    | Σ     | GT    | MOD   | 10/12 | 2 TAX | (2 M | Touch          | Print           |            | Display      |
| F | CUT      | OFF   | OFF   | OFF   | SETI  | 12    | ON    | ON   |                | 1               |            |              |
|   |          |       |       |       |       |       |       |      |                | 3.              | 용          |              |
|   |          |       |       |       |       |       |       |      |                | <pf></pf>       |            | 3.           |
| F |          |       |       |       |       | 12    |       | ON   |                |                 |            |              |
| F | CUT      | OFF   | OFF   | OFF   | SETII | 12    | ON    | ON   |                | 2               |            |              |
|   |          |       |       |       |       |       |       |      |                | 0.              | 용          |              |
|   |          |       |       |       |       |       |       |      | _              | <pf></pf>       |            | 0.           |
| - | OT I III | 0.00  | 0.00  | 0.00  | C2.T  | 10    | 011   | ON   | 5              | 2               |            | 5.           |
| F | CUT      | OF.F. | OF.F. | OF.F. | CAL   | 12    | ON    | ON   |                | 2               | 96         |              |
|   |          |       |       |       |       |       |       |      |                | 5.<br><pf></pf> | 70         | 0.           |
|   |          |       |       |       |       |       |       |      | С              | 0.              | С          | 0.           |
|   |          |       |       |       |       |       |       |      |                | <pf></pf>       |            | 0.           |
| F | CUT      | OFF   | OFF   | OFF   | SETII | 12    | ON    | ON   |                | 2               |            |              |
|   |          |       |       |       |       |       |       |      |                | 5.              | 용          |              |
|   |          |       |       |       |       |       |       |      |                | <pf></pf>       |            | 5.           |
| F | CUT      | OFF   | OFF   | OFF   | CAL   | 12    | ON    | ON   |                |                 |            | 0.           |
|   |          |       |       |       |       |       |       |      | 1560           |                 |            | 1,560.       |
|   |          |       |       |       |       |       |       |      | +TAXI          | 1               |            |              |
|   |          |       |       |       |       |       |       |      |                | 1560.           |            |              |
|   |          |       |       |       |       |       |       |      |                |                 | 용          |              |
|   |          |       |       |       |       |       |       |      |                | 46.8            | ♦          |              |
|   |          |       |       |       |       |       |       |      |                | 1606.8          | *          |              |
|   |          |       |       |       |       |       |       |      |                | <pf></pf>       |            | 1,606.8      |
|   |          |       |       |       |       |       |       |      | 1560           |                 |            | 1,560.       |
|   |          |       |       |       |       |       |       |      | +TAX <b>II</b> | 2               |            |              |
|   |          |       |       |       |       |       |       |      |                | 1560.           | _          |              |
|   |          |       |       |       |       |       |       |      |                | 7.0             | 용          |              |
|   |          |       |       |       |       |       |       |      |                | 78.<br>1638.    | ♦          |              |
|   |          |       |       |       |       |       |       |      |                | <pf></pf>       | .          | 1,638.       |
|   |          |       |       |       |       |       |       |      | +TAXI          | 1               |            | 1,030.       |
|   |          |       |       |       |       |       |       |      | TAAI           | 1638.           | $\Diamond$ |              |
|   |          |       |       |       |       |       |       |      |                | 1000.           | %          |              |
|   |          |       |       |       |       |       |       |      |                | 49.14           | ♦          |              |
|   |          |       |       |       |       |       |       |      |                | 1687.14         | *          |              |
|   |          |       |       |       |       |       |       |      |                | <pf></pf>       |            | 1,687.14     |
|   |          |       |       |       |       |       |       |      | 1560           |                 |            | 1,560.       |
|   |          |       |       |       |       |       |       |      | ×              | 1560.           | ×          | 1,560.       |
|   |          |       |       |       |       |       |       |      | 78900          |                 |            | 78,900.      |
| F | 4/5      | OFF   | OFF   | OFF   | CAL   | 12    | ON    | ON   | +TAXI          | 1               |            |              |
|   |          |       |       |       |       |       |       |      |                | 78900.          | =          |              |
|   |          |       |       |       |       |       |       |      |                | 123084000.      | <b>◊</b>   |              |
|   |          |       |       |       |       |       |       |      |                |                 | %          |              |
|   |          |       |       |       |       |       |       |      |                | 369520.         | <b>◊</b>   |              |
|   |          |       |       |       |       |       |       |      |                | 126776520.      | *          |              |
|   |          |       |       |       |       |       |       |      |                | <pf></pf>       |            | 126,776,520. |

Note 2: <PF>......Paper feed

16 2003-02-28

JTC83230-0017S

|   |     |     |      |     | Ke  | y     |       |       |               | Deint            |               | Diaglass         |
|---|-----|-----|------|-----|-----|-------|-------|-------|---------------|------------------|---------------|------------------|
| F | 4/5 | IC  | Σ    | GT  | MOD | 10/12 | 2 TAX | ( 2 M | Touch         | Print            |               | Display          |
|   |     |     |      |     |     |       |       |       | =             |                  |               | 126,776,520.     |
|   |     |     |      |     |     |       |       |       | 5             |                  |               | 5.               |
|   |     |     |      |     |     |       |       |       | ×             | 5.               | ×             | 5.               |
|   |     |     |      |     |     |       |       |       | +TAXI         |                  |               | 5.               |
|   |     |     |      |     |     |       |       |       | =             | 5.               | =             |                  |
|   |     |     |      |     |     |       |       |       |               | 25.              | *             |                  |
|   |     |     |      |     |     |       |       |       |               | <pf></pf>        |               | 25.              |
|   |     |     |      |     |     |       |       |       | +TAX <b>I</b> | 1                | ^             |                  |
|   |     |     |      |     |     |       |       |       |               | 25.              | <b>◊</b>      |                  |
|   |     |     |      |     |     |       |       |       |               | 0.75             | %<br><b>◊</b> |                  |
|   |     |     |      |     |     |       |       |       |               | 25.75            | *             |                  |
|   |     |     |      |     |     |       |       |       |               | <pf></pf>        |               | 25.75            |
|   |     |     |      |     |     |       |       |       | =             | 1117             |               | 25.75            |
|   |     |     |      |     |     |       |       |       | С             | 0.               | С             |                  |
|   |     |     |      |     |     |       |       |       |               | <pf></pf>        |               | 0.               |
| 2 | CUT | OFI | FOFF | OFF | CAL | 12    | ON    | ON    | 1560          |                  |               | 1,560.           |
|   |     |     |      |     |     |       |       |       | +             | 1560.00          | +             | 1,560.00         |
|   |     |     |      |     |     |       |       |       | 1100          |                  |               | 1,100.           |
|   |     |     |      |     |     |       |       |       | +             | 1100.00          | +             | 2,660.00         |
|   |     |     |      |     |     |       |       |       | +TAXII        | 2                |               |                  |
|   |     |     |      |     |     |       |       |       |               | 2660.00          | $\Diamond$    |                  |
|   |     |     |      |     |     |       |       |       |               |                  | 용             |                  |
|   |     |     |      |     |     |       |       |       |               | 133.00           | <b>◊</b>      |                  |
|   |     |     |      |     |     |       |       |       |               | 2793.00          | *             |                  |
|   |     |     |      |     |     |       |       |       |               | <pf></pf>        |               | 2,793.00         |
| F | CUT | OFI | OFF  | OFF | CAL | 12    | ON    | ON    | +TAX <b>I</b> | 1                |               |                  |
|   |     |     |      |     |     |       |       |       |               | 2793.00          | <b>◊</b>      |                  |
|   |     |     |      |     |     |       |       |       |               | 02 70            | %<br><b>◊</b> |                  |
|   |     |     |      |     |     |       |       |       |               | 83.79<br>2876.79 | *             |                  |
|   |     |     |      |     |     |       |       |       |               | <pf></pf>        |               | 2,876.79         |
|   |     |     |      |     |     |       |       |       | 980000        | 1117             |               | 2,010.13         |
|   |     |     |      |     |     |       |       |       | 000000        |                  |               | 980,000,000,000. |
|   |     |     |      |     |     |       |       |       | +TAXI         | 1                |               |                  |
|   |     |     |      |     |     |       |       |       |               | 980000000000.    |               |                  |
|   |     |     |      |     |     |       |       |       |               |                  | %             |                  |
|   |     |     |      |     |     |       |       |       |               | 29400000000.     | $\Diamond$    |                  |
|   |     |     |      |     |     |       |       |       |               | ,,,,,,,,,,,,     |               |                  |
|   |     |     |      |     |     |       |       |       |               | 1.0094000000     | *             |                  |
|   |     |     |      |     |     |       |       |       |               | <pf></pf>        |               |                  |
|   |     |     |      |     |     |       |       |       |               |                  |               | E 1.00940000000  |
|   |     |     |      |     |     |       |       |       | С             | 0.               | С             |                  |
|   |     |     |      |     |     |       |       |       |               | <pf></pf>        |               | 0.               |
|   |     |     |      |     |     |       |       |       | 1560          |                  |               | 1,560.           |
|   |     |     |      |     |     |       |       |       | +/-           |                  |               | -1,560.          |
|   |     |     |      |     |     |       |       |       | +TAXI         | 1                |               |                  |

Note 2: <PF> ......Paper feed

|   |     |     |     |     | Key   | У     |       |      |        | Delet         |            | Diamter      |     |
|---|-----|-----|-----|-----|-------|-------|-------|------|--------|---------------|------------|--------------|-----|
| F | 4/5 | IC  | Σ   | GT  | MOD   | 10/12 | 2 TAX | (2 M | Touch  | Print         |            | Display      |     |
|   |     |     |     |     |       |       |       |      |        | -1560.        |            |              |     |
|   |     |     |     |     |       |       |       |      |        |               | 용          |              |     |
|   |     |     |     |     |       |       |       |      |        | -46.8         | ♦          |              |     |
|   |     |     |     |     |       |       |       |      |        | -1606.8       | *          |              |     |
|   |     |     |     |     |       |       |       |      |        | <pf></pf>     |            | -1,606       | 6.8 |
|   |     |     |     |     |       |       |       |      | 1560   |               |            | 1,56         | 60. |
|   |     |     |     |     |       |       |       |      | -TAXI  | 1             |            |              |     |
|   |     |     |     |     |       |       |       |      |        | 1560.         |            |              |     |
|   |     |     |     |     |       |       |       |      |        |               | 용          |              |     |
|   |     |     |     |     |       |       |       |      |        | -45.43689321  | $\Diamond$ |              |     |
|   |     |     |     |     |       |       |       |      |        | 1514.56310679 | *          |              |     |
|   |     |     |     |     |       |       |       |      |        | <pf></pf>     |            | 1,514.563106 | 679 |
|   |     |     |     |     |       |       |       |      | -TAXI  | 1             |            |              |     |
|   |     |     |     |     |       |       |       |      |        | 1514.56310679 | $\Diamond$ |              |     |
|   |     |     |     |     |       |       |       |      |        |               | 용          |              |     |
|   |     |     |     |     |       |       |       |      |        | -44.11348855  | $\Diamond$ |              |     |
|   |     |     |     |     |       |       |       |      |        | 1470.44961824 | *          |              |     |
|   |     |     |     |     |       |       |       |      |        | <pf></pf>     |            | 1,470.449618 | 324 |
|   |     |     |     |     |       |       |       |      | 1560   |               |            | 1,50         | 60. |
|   |     |     |     |     |       |       |       |      | -TAXII | 2             |            |              |     |
|   |     |     |     |     |       |       |       |      |        | 1560.         |            |              |     |
|   |     |     |     |     |       |       |       |      |        |               | 용          |              |     |
|   |     |     |     |     |       |       |       |      |        | -74.28571429  | $\Diamond$ |              |     |
|   |     |     |     |     |       |       |       |      |        | 1485.71428571 | *          |              |     |
|   |     |     |     |     |       |       |       |      |        | <pf></pf>     |            | 1,485.714285 | 571 |
|   |     |     |     |     |       |       |       |      | -TAXII | 2             |            |              |     |
|   |     |     |     |     |       |       |       |      |        | 1485.71428571 | $\Diamond$ |              |     |
|   |     |     |     |     |       |       |       |      |        |               | ક          |              |     |
|   |     |     |     |     |       |       |       |      |        | -70.74829932  | $\Diamond$ |              |     |
|   |     |     |     |     |       |       |       |      |        | 1414.96598639 | *          |              |     |
|   |     |     |     |     |       |       |       |      |        | <pf></pf>     |            | 1,414.965986 | 639 |
| F | CUT | OFF | OFF | OFF | SETI  | 12    | ON    | ON   |        | 1             |            |              |     |
|   |     |     |     |     |       |       |       |      |        | 3.            | ્રે        |              |     |
|   |     |     |     |     |       |       |       |      |        | <pf></pf>     |            |              | 3.  |
|   |     |     |     |     |       |       |       |      | С      |               |            |              | 0.  |
| F | CUT | OFF | OFF | OFF | CAL   | 12    | ON    | ON   |        | 1             |            |              |     |
|   |     |     |     |     |       |       |       |      |        | 0.            | ્રે        |              |     |
|   |     |     |     |     |       |       |       |      |        | <pf></pf>     |            |              | 0.  |
| F | CUT | OFF | OFF | OFF | SETI  | 12    | ON    | ON   |        | 1             |            |              |     |
|   |     |     |     |     |       |       |       |      |        | 0.            | 용          |              |     |
|   |     |     |     |     |       |       |       |      |        | <pf></pf>     |            |              | 0.  |
|   |     |     |     |     |       |       |       |      | 1234   |               |            | 123          | 34. |
| F | CUT | OFF | OFF | OFF | CAL   | 12    | ON    | ON   |        | 1             |            |              |     |
|   |     |     |     |     |       |       |       |      |        | 1234.         | 용          |              |     |
|   |     |     |     |     |       |       |       |      |        | <pf></pf>     |            |              | 0.  |
| F | CUT | OFF | OFF | OFF | SETII | 12    | ON    | ON   |        | 2             |            |              |     |
|   |     |     |     |     |       |       |       |      |        | 5.            | 용          |              |     |

Note 2: <PF> ......Paper feed



|     | Key |     |     |     | Print |       | Display |     |          |               |          |                  |
|-----|-----|-----|-----|-----|-------|-------|---------|-----|----------|---------------|----------|------------------|
| F   | 4/5 | IC  | Σ   | GT  | MOD   | 10/12 | 2 TAX   | 2 M | Touch    |               |          | Display          |
|     |     |     |     |     |       |       |         |     |          | <pf></pf>     |          | 5.               |
|     |     |     |     |     |       |       |         |     | C        |               |          | 0.               |
| F   | CUT | OFF | OFF | OFF | CAL   | 12    | ON      | ON  |          | 2             |          |                  |
|     |     |     |     |     |       |       |         |     |          | 0.            | 용        |                  |
|     |     |     |     |     |       |       |         |     |          | <pf></pf>     |          | 0.               |
|     |     |     |     |     |       |       |         |     | 980000   |               |          |                  |
|     |     |     |     |     |       |       |         |     | 000000   |               |          | 980,000,000,000. |
|     |     |     |     |     |       |       |         |     | +TAXI    | 1             |          |                  |
|     |     |     |     |     |       |       |         |     |          | 980000000000. |          |                  |
|     |     |     |     |     |       |       |         |     |          |               |          |                  |
|     |     |     |     |     |       |       |         |     |          | 0.            | *        |                  |
|     |     |     |     |     |       |       |         |     |          | <pf></pf>     |          | E 0.             |
|     |     |     |     |     |       |       |         |     | С        | 0.            | С        |                  |
|     |     |     |     |     |       |       |         |     |          | <pf></pf>     |          | 0.               |
| А   | CUT | OFF | OFF | OFF | CAL   | 12    | ON      | ON  | 123      |               |          | 123.             |
|     |     |     |     |     |       |       |         |     | +        | 1.23          | +        | 1.23             |
|     |     |     |     |     |       |       |         |     | 456      |               |          | 456.             |
|     |     |     |     |     |       |       |         |     | +        | 4.56          | +        | 5.79             |
|     |     |     |     |     |       |       |         |     | <b>◊</b> | 5.79          | <b>◊</b> | 5.79             |
|     |     |     |     |     |       |       |         |     | *        | 5.79          | *        |                  |
|     |     |     |     |     |       |       |         |     |          | <pf></pf>     |          | 5.79             |
| AII | CUT | OFF | OFF | OFF | CAL   | 12    | ON      | ON  | 789      |               |          | 789.             |
|     |     |     |     |     |       |       |         |     | ×        | 789.          | ×        | 789.             |
|     |     |     |     |     |       |       |         |     | 100      |               |          | 100.             |
|     |     |     |     |     |       |       |         |     | =        | 1.00          | =-       |                  |
|     |     |     |     |     |       |       |         |     |          | 789.00        | *        |                  |
|     |     |     |     |     |       |       |         |     |          | <pf></pf>     |          | 789.00           |

Note 2: <PF> ......Paper feed

# Maximum Ratings (V<sub>SS</sub> = 0 V)

| Characteristics            | Symbol           | Rating                     | Unit |
|----------------------------|------------------|----------------------------|------|
| Supply voltage 1           | $V_{DD}$         | -0.3~6                     | V    |
| Supply voltage (LCD drive) | V <sub>LC</sub>  | -0.3~V <sub>DD</sub> + 0.3 | V    |
| Input voltage              | V <sub>IN</sub>  | -0.3~V <sub>DD</sub> + 0.3 | ٧    |
| Output voltage             | V <sub>OUT</sub> | -0.3~V <sub>DD</sub> + 0.3 | V    |
| Output current             | lout             | 3.2                        | mA   |
| Power dissipation          | PD               | 600                        | mW   |
| Soldering temperature      | T <sub>sld</sub> | 260 (10 s)                 | °C   |
| Storage temperature        | T <sub>stg</sub> | -55~125                    | °C   |
| Operating temperature      | T <sub>opr</sub> | 0~40                       | °C   |

# **Electrical Characteristics**

# Recommended Operating Conditions ( $V_{SS} = 0 \text{ V}, T_{opr} = 0 \sim 40^{\circ}\text{C}$ )

| Characteristics                                | Symbol           | Test<br>Circuit | Test Condition             | Min                    | Тур. | Max                    | Unit |
|------------------------------------------------|------------------|-----------------|----------------------------|------------------------|------|------------------------|------|
| Operating temperature                          | T <sub>opr</sub> | _               | _                          | 0                      | _    | 40                     | °C   |
|                                                |                  | _               | NORMAL                     | 4.5                    |      | 5.5                    |      |
| Supply voltage                                 | $V_{DD}$         | _               | SLOW                       | 4.5                    | _    |                        | V    |
|                                                |                  | _               | HOLD                       | 2.0                    |      |                        |      |
| High-level input voltage (non-schmitt circuit) | V <sub>IH1</sub> |                 | $V_{DD} \ge 4.5 \text{ V}$ | V <sub>DD</sub> × 0.7  | _    | V <sub>DD</sub>        | ٧    |
| High-level input voltage (schmitt circuit)     | V <sub>IH2</sub> | _               |                            | V <sub>DD</sub> × 0.75 | _    | V <sub>DD</sub>        | V    |
| High-level input voltage                       | V <sub>IH3</sub> | _               | V <sub>DD</sub> < 4.5 V    | V <sub>DD</sub> × 0.9  | _    | V <sub>DD</sub>        | V    |
| Low-level input voltage (non-schmitt circuit)  | V <sub>IL1</sub> |                 | V <sub>DD</sub> ≧ 4.5 V    | 0                      | _    | V <sub>DD</sub> × 0.3  | ٧    |
| Low-level input voltage (schmitt circuit)      | V <sub>IL2</sub> |                 | ע פאר = 1.0 ע              | 0                      | _    | V <sub>DD</sub> × 0.25 | V    |
| Low-level input voltage                        | V <sub>IL3</sub> | _               | V <sub>DD</sub> < 4.5 V    | 0                      | _    | V <sub>DD</sub> × 0.1  | V    |



# DC Electrical Characteristics (V<sub>SS</sub> = 0 V, T<sub>opr</sub> = 0~40°C)

|                            | 1                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                  |                                                           |          |
|----------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|----------|
| Symbol                     | Test<br>Circuit                                                                             | Terminal                                                                                                                                                                                                                                                                                                                                                  | Test Condition                                                                                                                                                                                                                                                                                                                                                                                                                      | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Тур.                                               | Max                                                       | Unit     |
|                            |                                                                                             | Hysteresis input                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7                                                | _                                                         | V        |
| V <sub>HS</sub>            | _                                                                                           |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                           |          |
| Linia                      | _                                                                                           | KO port, TEST,                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                  | ±2                                                        | μА       |
| 'INT                       |                                                                                             | RESET, HOLD                                                                                                                                                                                                                                                                                                                                               | V <sub>DD</sub> = 5.5 V                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                           |          |
| I <sub>IN2</sub>           | Open drain R port, P port                                                                   |                                                                                                                                                                                                                                                                                                                                                           | V <sub>IN</sub> = 5.5/0 V                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                           |          |
| R <sub>IN1</sub>           | _                                                                                           | KO port TEST with input resistor                                                                                                                                                                                                                                                                                                                          | V <sub>DD</sub> = 5.5 V                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70                                                 | 150                                                       | kΩ       |
| R <sub>IN2</sub>           | _                                                                                           | -                                                                                                                                                                                                                                                                                                                                                         | V <sub>IN</sub> = 5.5/0 V                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 220                                                | 450                                                       |          |
|                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                           | V <sub>DD</sub> = 5.5 V                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                  | 2                                                         | μΑ       |
| I <sub>LO1</sub>           | _                                                                                           | Sink open drain R port                                                                                                                                                                                                                                                                                                                                    | V <sub>OUT</sub> = 5.5 V                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                                                           |          |
| l                          |                                                                                             | Source open drain R port, P port                                                                                                                                                                                                                                                                                                                          | V <sub>DD</sub> = 5.5 V                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                  | -2                                                        |          |
| ILO2                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                           | V <sub>OUT</sub> = -1.5 V                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |                                                           |          |
| V                          |                                                                                             | Source open drain R port, P port                                                                                                                                                                                                                                                                                                                          | V <sub>DD</sub> = 5.5 V                                                                                                                                                                                                                                                                                                                                                                                                             | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                  | _                                                         | V        |
| VOH                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                           | $I_{OH} = -3.0 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |                                                           | Ů        |
| V <sub>OL</sub>            |                                                                                             | Sink open drain R port                                                                                                                                                                                                                                                                                                                                    | V <sub>DD</sub> = 5.5 V                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    | 0.4                                                       | V        |
|                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                           | I <sub>OL</sub> = 1.6 mA                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                           |          |
| R <sub>OUT</sub>           |                                                                                             | R port, P port                                                                                                                                                                                                                                                                                                                                            | V <sub>DD</sub> = 5.5 V                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70                                                 | 150                                                       | kΩ       |
|                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                           | $V_{IN} = 5.5 V$                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70                                                 | 150                                                       |          |
| Ros                        |                                                                                             | SEG                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    | 35                                                        | kΩ       |
| R <sub>OC</sub>            | _                                                                                           | СОМ                                                                                                                                                                                                                                                                                                                                                       | \/                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    | 33                                                        | K75      |
| V <sub>O2/3</sub>          |                                                                                             |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0                                                | 4.2                                                       | V        |
| V <sub>O1/2</sub>          | _                                                                                           | SEG/COM                                                                                                                                                                                                                                                                                                                                                   | ADD - AFC = 2 A                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.5                                                | 3.7                                                       |          |
| V <sub>O1/3</sub>          |                                                                                             |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.0                                                | 3.2                                                       |          |
| mal) I <sub>DD</sub>       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                           | V <sub>DD</sub> = 5.5 V,<br>V <sub>LC</sub> = V <sub>SS</sub>                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                  | mA                                                        |          |
| טט                         |                                                                                             |                                                                                                                                                                                                                                                                                                                                                           | f <sub>C</sub> = 4 MHz                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                           | ,        |
| et (slow) I <sub>DDS</sub> |                                                                                             | _                                                                                                                                                                                                                                                                                                                                                         | V <sub>DD</sub> = 3.0 V,<br>V <sub>LC</sub> = V <sub>SS</sub>                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60                                                 | μА                                                        |          |
|                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                           | f <sub>S</sub> = 32.768 kHz                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |                                                           | <u> </u> |
| I <sub>DDH</sub>           | _                                                                                           |                                                                                                                                                                                                                                                                                                                                                           | V <sub>DD</sub> = 5.5 V                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5                                                | 10                                                        | μΑ       |
|                            | VHS  IIN1  IIN2  RIN1  RIN2  ILO1  ILO2  VOH  VOL  ROUT  ROS  ROC  VO2/3  VO1/2  VO1/3  IDD | Symbol         Circuit           VHS         —           IIN1         —           IIN2         —           RIN1         —           ILO1         —           ILO2         —           VOH         —           ROUT         —           ROS         —           ROC         —           VO1/2         —           VO1/3         —           IDDS         — | Symbol Circuit Terminal  VHS — Hysteresis input  IN1 — KO port, TEST, RESET, HOLD  IN2 — Open drain R port, P port  RIN1 — KO port TEST with input resistor  RIN2 — RESET, HOLD  ILO1 — Sink open drain R port  ILO2 — Source open drain R port  VOH — Source open drain R port  VOH — Sink open drain R port  VOL — Sink open drain R port  ROUT — R port, P port  ROS — SEG  ROC — COM  VO2/3  VO1/2 — SEG/COM  IDD — —  IDDS — — | Variable   Variable | Symbol   Circuit   Terminal   Test Condition   Min | Symbol   Circuit   Terminal   Test Condition   Min   Typ. | Note     |

Note 3: Typ. values are guaranteed at  $T_{opr} = 25$ °C,  $V_{DD} = 5$  V.

Note 4: I<sub>IN1</sub>: Excepts a current through a internal pull up/down resistor.

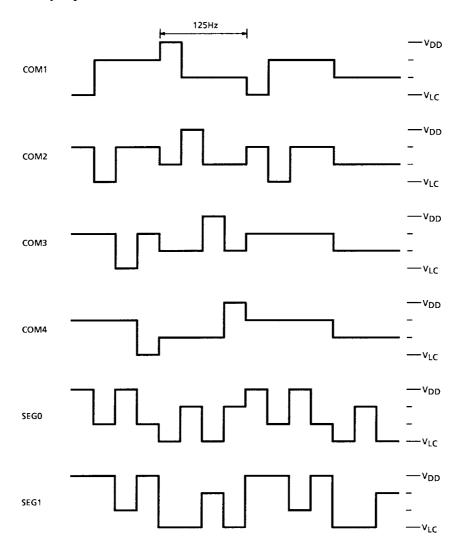
Note 5: ROS, ROC: Shows on-resistor at level switching.

Note 6: V<sub>O2/3</sub>: Shows 2/3 level output voltage at which 1/4 or 1/3 duty LCD drive.

Note 7: V<sub>O1/2</sub>: Shows 1/2 level output voltage at which 1/2 duty or static LCD drive.

Note 8: V<sub>O1/3</sub>: Shows 1/3 level output voltage at which 1/4 or 1/3 duty LCD drive.

Note 9:  $I_{DD}$ ,  $I_{DDH}$ : Current consumption at  $V_{IN} = 5.3 \text{ V}/0.2 \text{ V}$ 

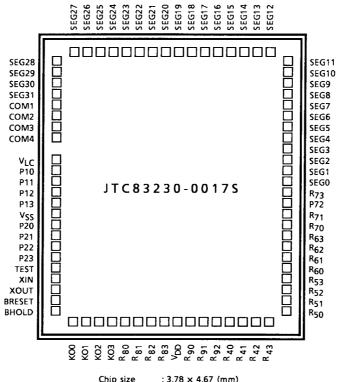

Should be under that KO port is open and R port voltage level is valid.

# Oscillation Circuit (V<sub>SS</sub> = 0 V, V<sub>DD</sub> = 4.5~5.5 V, $T_{opr}$ = 0~40°C)

| Recommended Circuit | Test Condition                                                                | Min | Тур.   | Max | Unit |
|---------------------|-------------------------------------------------------------------------------|-----|--------|-----|------|
| XIN XOUT            | $V_{DD} = 5.0 \text{ V}$ $C = 100 \text{ pF}$ $R = 1 \text{ k}\Omega \pm 2\%$ | 2.4 | 4.0    | 5.6 | MHz  |
| XTIN XTOUT          | C = 10 pF (XIN), 22 pF (XOUT)<br>X'tal = 32.768 kHz                           |     | 32.768 |     | kHz  |

22 2003-02-28

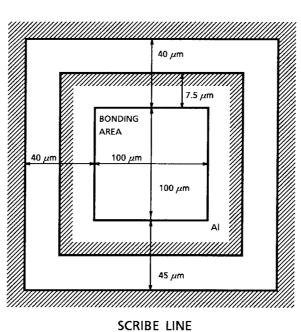
# **Waveforms for Display**




# **Pad Location Table**

| Name            | X Point | Y Point |
|-----------------|---------|---------|
| KO0             | -1282   | -2074   |
| KO1             | -1122   | -2074   |
| KO2             | -962    | -2074   |
| KO3             | -802    | -2074   |
| R <sub>80</sub> | -641    | -2074   |
| R <sub>81</sub> | -438    | -2074   |
| R <sub>82</sub> | -278    | -2074   |
| R <sub>83</sub> | -74     | -2074   |
| $V_{DD}$        | 86      | -2074   |
| R <sub>90</sub> | 246     | -2074   |
| R <sub>91</sub> | 449     | -2074   |
| R <sub>92</sub> | 610     | -2074   |
| R <sub>40</sub> | 802     | -2074   |
| R <sub>41</sub> | 962     | -2074   |
| R <sub>42</sub> | 1122    | -2074   |
| R <sub>43</sub> | 1282    | -2074   |
| R <sub>50</sub> | 1644    | -2011   |
| R <sub>51</sub> | 1644    | -1807   |
| R <sub>52</sub> | 1644    | -1647   |
| R <sub>53</sub> | 1644    | -1444   |
| R <sub>60</sub> | 1644    | -1283   |
| R <sub>61</sub> | 1644    | -1080   |
| R <sub>62</sub> | 1644    | -920    |
| R <sub>63</sub> | 1644    | -716    |
| R <sub>70</sub> | 1644    | -556    |
| R <sub>71</sub> | 1644    | -353    |
| R <sub>72</sub> | 1644    | -193    |
| R <sub>73</sub> | 1644    | 62      |
| SEG0            | 1644    | 223     |
| SEG1            | 1644    | 383     |
| SEG2            | 1644    | 543     |
| SEG3            | 1644    | 703     |
| SEG4            | 1644    | 863     |
| SEG5            | 1644    | 1024    |
| SEG6            | 1644    | 1184    |
| SEG7            | 1644    | 1344    |
| SEG8            | 1644    | 1504    |
| SEG9            | 1644    | 1664    |
| SEG10           | 1644    | 1825    |
| SEG11           | 1644    | 1985    |

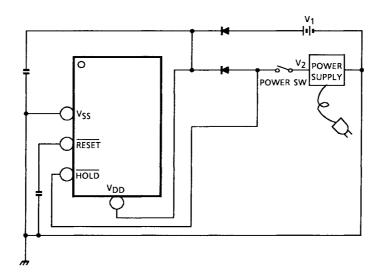
| Name            | X Point | Y Point |  |  |
|-----------------|---------|---------|--|--|
| SEG12           | 1202    | 2074    |  |  |
| SEG13           | 1042    | 2074    |  |  |
| SEG14           | 881     | 2074    |  |  |
| SEG15           | 721     | 2074    |  |  |
| SEG16           | 561     | 2074    |  |  |
| SEG17           | 401     | 2074    |  |  |
| SEG18           | 241     | 2074    |  |  |
| SEG19           | 80      | 2074    |  |  |
| SEG20           | -80     | 2074    |  |  |
| SEG21           | -240    | 2074    |  |  |
| SEG22           | -400    | 2074    |  |  |
| SEG23           | -560    | 2074    |  |  |
| SEG24           | -721    | 2074    |  |  |
| SEG25           | -881    | 2074    |  |  |
| SEG26           | -1041   | 2074    |  |  |
| SEG27           | -1201   | 2074    |  |  |
| SEG28           | -1644   | 1961    |  |  |
| SEG29           | -1644   | 1801    |  |  |
| SEG30           | -1644   | 1641    |  |  |
| SEG31           | -1644   | 1481    |  |  |
| COM1            | -1644   | 1321    |  |  |
| COM2            | -1644   | 1160    |  |  |
| COM3            | -1644   | 1000    |  |  |
| COM4            | -1644   | 840     |  |  |
| V <sub>LC</sub> | -1644   | 520     |  |  |
| P10             | -1644   | 359     |  |  |
| P11             | -1644   | 156     |  |  |
| P12             | -1644   | -4      |  |  |
| P13             | -1644   | -208    |  |  |
| V <sub>SS</sub> | -1644   | -368    |  |  |
| P20             | -1644   | -528    |  |  |
| P21             | -1644   | -731    |  |  |
| P22             | -1644   | -892    |  |  |
| P23             | -1644   | -1095   |  |  |
| TEST            | -1644   | -1255   |  |  |
| XIN             | -1644   | -1415   |  |  |
| XOUT            | -1644   | -1651   |  |  |
| BRESET          | -1644   | -1811   |  |  |
| BHOLD           | -1644   | -1971   |  |  |


# **Chip Layout**



Chip size : 3.78  $\times$  4.67 (mm) Chip thickness : 450  $\pm$  30 ( $\mu$ m) : V<sub>SS</sub> : 100 (μm<sup>□</sup>) Substrate Pad size

# **Pad Layout**


### **Active Element**



**SCRIBE LINE** 

PAD Pitch : 160 µm

# The Proposal of Outer Circuit for Tax Rate Holding with Back-Up Battery.



Note 10:  $V_1 = +3 \text{ V}$ : Battery supply

 $V_2 = +5 \text{ V: DC supply}$ 

 $\overbrace{ {
m HOLD} \atop {
m RESET} }$  pin is pulled down in the LSI, but normally pulled up to VDD.

- (1) Setting POWER SW to ON,  $V_2$  is supplied to  $V_{DD}$  pin, and also to  $\overline{HOLD}$  pin. Then calculator operates normally.
- (2) Setting POWER SW from ON to OFF,  $V_1$  is supplied to  $V_{DD}$  pin and  $V_{SS}$  is supplied to  $\overline{HOLD}$  pin. Under this connection, TAX RATE is held.
- (3) Setting POWER SW to ON,  $V_2$  is supplied to  $V_{DD}$  pin, and also to  $\overline{HOLD}$  pin. Then calculator operates normally with TAX RATE to be held.

Note 11: V<sub>1</sub> (battery) should be supplied to the circuit after V<sub>2</sub> (DC) supply, because of prevention from exhaustion of battery and abnormal operation.

# RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.